本申请涉及废液回收利用领域,尤其涉及一种酸洗废液制备脱硫剂的方法和系统及其应用;所述方法包括:对酸洗废液进行蒸发浓缩,得到富含铁离子的富集液;对富集液以碱性添加物进行pH调节,得到固液混合物;对固液混合物进行过滤,得到固体产物;混合固体产物和添加剂,后进行挤条和干燥,得到含有氧化铁的脱硫剂;所述系统包括:蒸发浓缩单元;中间反应单元;中间反应单元包括浓液中间罐、反应罐和碱性物添加罐,过滤单元;混合挤出单元;混合挤出单元包括固相原料混料机、前驱体挤出机和产品烘干机;所述应用包括:所述方法制备得到的脱硫剂用于高炉煤气和/或焦炉煤气的脱硫反应中;通过该方法步骤,实现对酸洗废液的资源化利用。
本发明公开了一种有机废弃物循环利用方法及其中所用的一种杀菌装置,方法为:收集;厌氧发酵,得到沼气、一级沼渣、一级沼液;二级发酵,将一级沼渣中加入一定的生物菌剂及辅料,调质后进行二次发酵,得到二级沼渣和二级沼液;将二级沼渣低温干燥,干燥温度为45-60℃,粉碎,制备为固体有机肥料;将沼液制备为液肥;将有机废水沉多级闪蒸及银离子杀菌进行净化,与液肥混配后进行农田灌溉喷施。所述杀菌装置包括:加热管,其为底面和拱形顶面扣合而成的筒体,拱形顶面内壁设置有多个排气管,底面上设置有多个隔板,形成一沿所述底面延伸的S形通路;还包括蒸汽发生装置,并利用沼气加热产生蒸汽。
本发明涉及一种废旧三元锂离子电池正负极混合粉的回收方法及系统,该回收方法包括在700~1000℃的温度下,对废旧三元锂离子电池正负极混合粉进行第一还原处理,得到第一气体混合物和第一固体混合物;其中,所述第一还原处理采用的还原剂包括氢气;所述第一气体混合物包含氧化锂和氢氧化锂,所述第一固体混合物包含镍、钴和氧化亚锰。本发明的废旧三元锂离子电池正负极混合粉的回收方法,通过还原处理能够将镍钴还原为金属,为后续镍钴与锰化合物的分离提供了良好的基础;同时锂化合物在还原温度下升华为气体,通过气固分离实现了优先、高效提锂。
本发明涉及重金属回收处理领域,公开了一种含六价铬废水的处理工艺方法。包括:去除含六价铬废水的固体杂质;将所述含六价铬废水注入装有重金属吸附材料的吸附交换柱,所述六价铬被吸附富集在所述重金属吸附材料的表面,经过所述吸附交换柱后的水外排,当富集在所述重金属吸附材料表面金属达到预定程度时,注入稀硫酸,富集在所述重金属吸附材料的表面铬离子被解吸到所述稀硫酸中,得到解吸液;将所述解吸液注入电沉积设备,电沉积得到固体的铬。
本发明提供了一种有机废弃物热解系统以及热解方法,其中,有机废弃物热解系统包括:破碎装置、干燥器、旋转床热解炉、热解固体处理装置、冷却和净化装置、储油罐和蓄热式旋转换热器,其中,旋转床热解炉适于对热解原料进行热解处理,且旋转床热解炉内具有可旋转的、用于盛放热解原料的布料盘,布料盘将旋转床热解炉内分隔成位于布料盘上方的热解腔室、位于布料盘下方的供热腔室,其中,布料盘上具有多个连通热解腔室和供热腔室的通孔;蓄热式旋转换热器分别与冷却和净化装置和旋转床热解炉的热气进口相连,用于将不凝气进行加热后用于热解处理。由此采用本发明上述实施例的有机废弃物热解系统可以有效地对有机废弃物进行热解。
本发明涉及回收钕铁硼和钐钴磁性材料废料中稀土和其它金属方法,其包括以下步骤:钕铁硼或钐钴废料呈稀细颗粒泥状,将此干躁、粉碎后进行氧化焙烧,得到的固体经粉碎后,加入碳粉、添加剂粉、粘接剂进行造球,球团在高温用碳进行选择性还原、熔分,得到稀土氧化物渣相1和含碳金属相1。将含碳金属相1粉碎后进行氧化焙烧、选择性还原、熔分,对于钕铁硼废料,分离得到氧化硼渣相产品2与Fe-Co金属相产品2;对于钐钴废料只得到Fe-Co金属相产品2。稀土氧化物渣相1、Fe-Co金属相产品2可作为制造钐钴磁铁的初始原料;稀土氧化物渣相1、Fe-Co金属相产品2、氧化硼渣相产品2可作为制造钕铁硼磁铁的初始原料。
本发明公开了一种低浓度含氰废水的处理方法及系统,其主要包括:对低浓度含氰废水进行预处理,去除低浓度含氰废水中的大颗粒固体污染物;再进行膜处理,去除大部分氰离子,处理出水采用常规的NaClO氧化等方法处理可达标排放;同时,膜处理产生浓缩液采用催化湿式氧化进行处理达到排放标准。其系统主要包括:格栅,膜处理系统,催化湿式氧化处理设备。本发明的有益效果是:对低浓度含氰废水进行膜处理后再进入常规的NaClO氧化方法处理达标排放,降低了排放处理系统的处理难度和成本;而浓缩液再经催化湿式氧化处理,处理后的出水可以达到直接排放的标准,或可回用作清洗水等。
本发明公开了一种资源化回收废水中氰化物的方法,该方法采用疏水膜进行膜吸收,先将所述废水用酸液调pH,同时控制含氰废水和吸收液的温度,通过过滤装置去除含氰废水中的固体物质,然后将废水和吸收液通入膜吸收装置,控制含氰废水和吸收液的流量比,采用间歇式或者连续式方法处理含氰废水,直至废水中总氰浓度降至目标浓度以下;本发明操作简单,适用范围广,可以在常温下进行,能一次性将总氰浓度降至0.5mg/L以下,对废水中的氰化物进行有效回收,回收率可达99%以上。
本发明提供了一种蓝宝石用研磨废料浆中回收金刚石的方法及产品。本发明方法,采用特定工艺,能够从蓝宝石研磨废料浆中回收金刚石,不损害金刚石自身的性能,使金刚石重复利用,减少有害废物的排放量;采用离心脱油和皂化除油配合,能够使固液分离彻底,液体有机物去除率达80%以上;采用硫酸和高氯酸与杂质反应,固体有机物(固体树脂、铜粉)杂质去除率达95%以上;离心分离和沉降分离结合,实现分离精制,氧化铝和膨润土杂质去除率达95%以上,所得金刚石粉末颗粒纯度高,可以重复多次利用,能够有效降低蓝宝石研磨加工工艺的成本。
一种含硫酸铅废料脱硫工艺及其脱硫母液的循环方法,属于对含铅固体废弃物进行综合利用的技术领域。(1)采用复合浸出剂溶解含硫酸铅废料,使溶解硫酸铅固体溶解;经固液分离后得到溶解有硫酸铅的滤液和未反应的滤渣;复合浸出剂包含A‑B共轭溶液;A为氨或胺类物质中的一种或几种,B为铵盐;向硫酸铅滤液中加入提供碳酸根的碳化剂,经固液分离得到碳酸铅沉淀和脱铅母液;向脱铅母液中加入脱硫剂,经固液分离得到硫酸盐和脱硫母液。本发明设计努力反应原子经济反应的要求。
一种前端提取锂电池废料中锂的方法,属于废旧锂离子电池材料回收技术领域。主要步骤包括:(1)将废旧锂电池材料粉末、固体还原剂与分散剂混匀,用磨机磨细。(2)将磨好的物料与分解剂混匀,配入添加剂于还原炉内焙烧,控制还原炉气氛。(3)还原焙烧料在气氛保护下冷淬,然后配入球磨添加剂球磨活化。(4)配入浸出剂,常压/氧压浸出,过滤得到锂盐溶液。(5)锂盐溶液净化后加入碳酸钠,蒸发结晶过滤得到碳酸锂。本发明使废旧锂电池材料的空间层状结构迅速还原分解,将锂原子释放出来,配合高温常压/氧压浸出,迅速溶解释放出来的锂原子,克服了常规碳热还原焙烧后续浸出回收锂效率低下的难题,具有良好经济效益。
一种废弃电子玻璃的回收利用和无害化处理方法,涉及一种利用现有火法炼铅的熔炼工艺处理涉及阴极射线管为显示器的电视机和计算机废弃后所产生的各类含铅玻璃类物质的方法。其特征在于将废弃电子玻璃破碎与铅熔炼过程中的矿物原料、助剂和碳还原剂混合配料,然后将混合配料由空气喷入闪速熔炼反应炉内进行闪速熔炼,产出粗铅、熔炼炉渣;熔炼炉渣在贫化电炉内与碳还原剂再混合,经过进一步还原,产出含铅小于2%的渣。本发明的方法,能使含铅的危险固体废弃物得到有效处理,处理成本低廉、处理量大、原料适应性强,产出的熔炼渣可有效利用,不产生二次污染物。
本发明公开了一种以顺酐废水生产富马酸的方法,该方法包括过滤浓缩、树脂脱色、异构化反应、结晶重结晶、离心过滤、干燥等过程,最终制得纯净的富马酸产品。本发明以顺酐废水生产富马酸的方法工艺合理、并利用可循环的新型固体异构化催化剂,最终达到节约富马酸生产成本、实现富马酸绿色生产、提升富马酸产品产量和品质的目的;本发明以顺酐废水生产富马酸的方法中采用的马来酸异构化催化剂为新型固体催化剂,该催化剂价格低廉、对设备无腐蚀且可重复循环利用,并且整个工艺流程简单合理,符合绿色循环经济,生产效果显著,有一定的工业化应用前景。
本发明提供一种从包含锂的二次电池废料中提取锂的方法,所述方法包括如下步骤:将包含锂的二次电池废料与酸进行混合后进行水热反应;将反应后得到的悬浮液过滤,得到包含锂离子的溶液和固体产物;其中,水热反应的温度为80‑220℃,反应时间为1‑60h,所述反应后得到的悬浮液的pH 为3‑7.5。所述方法绿色高效,流程短,能耗低,成本低,无二次污染,无需三废处理,易于产业化。
一种餐厨废弃物分相产能装置,蒸汽自旋湿热预处理装置的导热油管道出口与三相保温装置相连,蒸汽出口与蓄热器相连,湿热预处理结束后将导热油和蒸汽的高温余热回收储存至三相换热保温单元。湿热预处理装置底部出料口与叠螺脱水机相连进行固液分离。湿热预处理后的餐厨废弃物经固液分离后的液相进入液相物料发酵罐进行产氢;固相物料发酵罐与调节池相连,经叠螺脱水机后的固体物料经参数调节后由输送泵进入固相物料发酵罐进行产甲烷。厌氧发酵单元的液相发酵罐和固相发酵罐的加热盘管与三相换热保温单元的蓄热器相连,由温控电磁阀对厌氧发酵罐进行保温。本发明可实现餐厨废弃物联产氢气和甲烷气的分相产能,实现最佳能源转化效率。
一种危险废物的破碎预处理系统,涉及环境保护、垃圾破碎及危险废物处理等技术领域。本发明包括依次相连接的辊筒输送机一、垂直放置的自动提升机、辊筒输送机二、溜槽、喂料器、剪切式破碎机、混合机、螺旋输送机和柱塞泵。溜槽上方设有安全防爆罐。同现有技术相比,本发明综合了固体废物破碎细化、系统密封、动力输送、系统安全防爆等功能,具有安全可靠、方便适用的特点。
本发明涉及有色金属冶金技术领域,具体地,本发明涉及一种处理红土镍矿还原焙烧镍铁废渣的清洁生产方法。本发明包括以下步骤:1)将红土镍矿还原焙烧镍铁废渣破碎研磨后,进行磁选分离得到富含Ni的磁选精矿和富含Cr的磁选尾矿;2)将富含Cr的磁选尾矿进行湿式球磨后将固体碱与富含Cr的磁选尾矿进行干混后压块;3)将压块混合料进行碱熔焙烧反应后进行研磨制样;4)将研磨熟料用清水洗涤过滤,得到碱性滤液,其中水洗温度控制在30~95℃;5)将碱性滤液制得的氧化铬;6)由富含Ni的磁选精矿提取Ni。本发明提供一种具有工业操作性且环境友好的红土镍矿还原熔炼镍铁废渣清洁处理方法,为红土镍矿资源的综合利用提供了一条有效的途径。
本发明提供了一种催化剂废水处理系统。该催化剂废水处理系统包括:预处理组件,预处理组件与催化剂废水缓冲罐连接以除去催化剂废水中的固体杂质;蒸发组件,蒸发组件与预处理组件连接以蒸发催化剂废水中的水分;冷凝组件,冷凝组件与蒸发组件连接以冷凝蒸发组件蒸发的水分;结晶组件,结晶组件与蒸发组件连接以处理经蒸发组件处理之后残留的催化剂废水。本发明的催化剂废水处理系统不仅能够回收对催化剂废水中的水分,实现循环利用,而且还能够回收催化剂废水中残留的物,节约能源,增加企业经济效益。
本发明公开了一种从放射性有机废液中回收微量铀和/或钚的方法,首先用碳酸盐溶液对放射性有机废液进行反萃,再用固体功能吸附材料对反萃水相进行振荡吸附、柱层析或膜过滤,处理后的液体再次作为反萃溶液循环利用,吸附了铀和/或钚的固体功能吸附材料则用酸洗脱,得到富集的含铀和/或钚水溶液,洗脱后的吸附材料则用碳酸氢盐水溶液浸泡或洗涤后重复利用。本发明实现了碳酸盐反萃与(弱)碱性水溶液中低浓度铀和/或钚回收的联用,并实现了功能吸附材料和反萃溶液的循环使用,尽可能地降低了废物量。
一种利用离子交换纤维去除选矿废水中有害金属离子的工艺,其步骤为:a.将离子交换纤维经过编织定型,包裹于载体之外,构成吸附单元;b.待处理的选矿废水进行至少24小时的自然沉降,以初步去除其中的固体颗粒和杂质;c.将所述吸附单元载体置于经过自然沉降的选矿废水中,以200~400r/min的转速充分搅拌0.5~1小时,然后静置2~4小时;d.将吸附单元取出,用0.05mol/L盐酸溶液洗涤2次,再以0.1mol/L的盐酸和0.05mol/L的硫脲溶液的混合溶液洗脱,以回收吸附单元;经过吸附处理后的选矿废水进入其他废水处理流程。本发明工艺操作简单,吸附效率高,操作时间短,容易实现多级组合,具有高效、经济和对环境友好的优势,有利于我国选矿废水的有效处理和循环利用。
本发明涉及一种磷酸铁锂正极废料锂的高效回收和电池级磷酸铁的制备方法,属于电子废弃物资源化处理领域。该方法采用廉价的空气直接氧化磷酸铁锂正极废料,使锂从废料中脱出进入到溶液,实现锂的选择性提取。水浸渣与铁粉及少量硫酸混合进行球磨活化还原,活化后得到的固体产物用硫酸溶液进行搅拌溶出。得到的铁、磷溶液与双氧水、氢氧化钠溶液反应,并经陈化、洗涤、煅烧后得到电池用磷酸铁。本方法具有试剂廉价、产品质量好、有价元素回收率高等优点,并且过程中可实现介质内部循环,无外排废液,三废处理成本低。
本发明涉及石油化工废弃物处理技术领域,提供了一种石化剩余污泥与FCC废催化剂协同无害化处置方法,包括以下步骤:以FCC废催化剂为玻璃体网络形成体材料,在高温熔融炉中与石化剩余污泥协同玻璃化,冷却后形成玻璃体。同时,用高温炉将石化剩余污泥有机成分裂解气化后焚烧利用或进入合成气收集装置,尾气导入烟气处理装置进行处理。本发明以石化行业剩余污泥和FCC废催化剂为原料,通过高温炉使之熔融玻璃化,冷却形成的玻璃态物质可以有效的将重金属等固定于玻璃体中难以浸出,达到多种固体废物协同无害化处置的效果,实现石化行业剩余污泥和FCC废催化剂协同无害化处置,同时形成的玻璃体可以作为原料应用于建材行业,实现资源化利用。
本发明涉及一种柠檬酸废水资源化生产多粘类芽孢杆菌微生物菌剂的方法,属于微生物菌剂和废水资源化技术领域。该方法主要是以柠檬酸生产过程中产生的高浓度有机废水为主要培养基原料,采用液态发酵的方法生产多粘类芽孢杆菌微生物菌剂。生产工艺包括:(1)柠檬酸废水pH调节和灭菌;(2)接种斜面保藏的多粘类芽孢杆菌,振荡培养获得液体种子;(3)向装有柠檬酸废水培养基的发酵罐中接种液体种子,通无菌空气培养得到液态发酵产物;(4)发酵液与生物碳混合获得固体菌剂。该工艺生产的多粘类芽孢杆菌微生物菌剂,具有生产成本低、环境友好的特点,产品能明显改善土壤环境质量、提高作物产量和品质,而且能够防治多种植物病害。同时为柠檬酸生产过程中产生的大量高浓度废水找到有效的资源化利用方法,减少污染物排放。
本发明公开了一种用于船舶柴油机废气脱硫的高可靠性碱液输送与测控装置,属于大气污染控制和船舶废气排放控制领域。系统由洗涤釜、中和处理器、水仓、碱液罐、固液分离器、饱和液罐、固体排料仓、处理混合液等输送与测控装置等组成。将船舶柴油机废气进入洗涤釜内与喷淋脱硫碱性水溶液充分混合接触,并通过中和处理溶解吸收其中的硫氧化物,形成硫酸盐。废气中的其它颗粒物也被水溶液附着、混合,后经分离、处理、回收。基于可靠性理论与方法,进行船舶柴油机废气脱硫系统中的碱液输送与测控装置各部件的串并联组合设计,降低了碱液输送与测控装置故障概率,大幅度提高废气脱硫设备运行的可靠性,满足船舶柴油机废气脱硫要求。
本实用新型公开了一种废料处理循环设备,包括:煅烧炉,煅烧炉用于煅烧,且煅烧炉用于将催化剂进行高温还原;反应釜,反应釜用于供废料在催化剂作用下进行反应,反应釜具有出气口和出料口;第一输送链,第一输送链分别与煅烧炉和反应釜相连,第一输送链用于将煅烧炉内还原的催化剂输送至反应釜;第二输送链,第二输送链分别与煅烧炉和出料口相连,第二输送链用于将反应釜的固体产物输送至煅烧炉,以供煅烧炉将固体产物中的催化剂进行高温还原;冷热交换器,冷热交换器与出气口相连,冷热交换器用于将反应釜的气体产物进行冷却液化;根据本实用新型实施例的一种废料处理循环设备,对于排出气体的处理彻底,避免对环境造成污染。
本发明涉及一种乙烯废碱液的处理方法,包括:(1)气浮除油,除去乙烯废碱液中夹带的油类物质;(2)高温湿式氧化处理,除油后的废碱液中加入氢氧化钠,使其在碱性条件下进行高温湿式氧化处理;(3)蒸发浓缩,对经高温湿式氧化处理后的废碱液进行蒸发浓缩,提高废碱液中氢氧化钠的浓度;(4)调节碱浓度,向蒸发浓缩后的废碱液中加入固体氢氧化钠,回收析出的硫酸钠和碳酸钠,产生的高浓度氢氧化钠溶液回用到步骤(2)和/或上游的碱洗塔。本发明方法可以高效去除乙烯废碱液中的COD和硫化物,同时可以有效回收钠盐,并回用处理后的氢氧化钠溶液,实现了乙烯废碱液的零排放。
本发明涉及一种处理废水的方法,属于污水处理领域。其包括以下步骤:第一步骤:将废水排入除硬反应池中,加入除硬药剂,除去废水中的Mg2+和Ca2+;第二步骤:将经过所述第一步骤处理后的废水排入过滤器中进行过滤,除去废水中的悬浮性固体物物质;第三步骤:将所述经过第二步骤处理后的废水排入真空膜蒸馏装置,直接进行真空膜蒸馏,分离废水中其余的盐类。根据本发明的方法,可以方便且有效地处理高硬、高盐度废水,特别是在乙烯生产中所产生的碱液焚烧废水,并且具有废水排放量低、产水量高、水质好等优点。
本发明涉及一种废旧磷酸铁锂电池正极粉提锂同步合成可见光响应光催化剂的方法,属于环境保护与资源综合利用的固体废弃物资源化利用新技术。以废旧的磷酸铁锂电池为原料,回收锂的同时成功的合成了一种具有吸附‑光催化协同能力的光催化剂,该催化剂具有对可见光吸收范围广、协同能力强、去除效率高等优点。优异的吸附‑光催化的协同能力克服了传统的光催化剂的缺点,使得该光催化剂在可见光下具有快速去除有机染料的能力。本发明工艺简单,条件温和,成本低廉,制备的光催化剂在废水处理或有机染料污染场地修复方面具有巨大的应用潜力。
一种稀土冶炼分离过程含镁和/或钙废液的综合利用方法,将稀土冶炼分离过程产生的含镁和/或钙废液经热解得到氧化镁和/或氧化钙固体和含氯化氢气体,所得含氯化氢气体制酸后返回用于稀土矿酸溶或者稀土萃取分离,所得氧化镁和/或氧化钙直接返回用于稀土沉淀结晶或经调浆碳化提纯用作稀土沉淀结晶的新型沉淀剂。本发明的处理方法流程短、能耗低,同时所得产品及副产品与稀土冶炼分离过程相互结合,实现资源循环利用,整个过程基本无废水、废气排放。
一种以铝合金表面处理产生的工业废渣制备氢氧化铝的方法。所述方法包括以下步骤:(1)用碱性水溶液浸提工业废渣中的铝元素;(2)进行固液分离,得到含铝滤液;(3)用酸调节滤液pH值,沉淀氢氧化铝;(4)进行固液分离,得到氢氧化铝固体沉淀。本发明可高效分离回收铝合金表面处理工业废渣中的铝元素,实现铝合金表面处理工业废渣资源化利用。
中冶有色为您提供最新的北京有色金属环境保护技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!