本发明公开了一种用于复合材料成型件的定位方法,首先利用自动铺带机铺贴复合材料件,然后从数模上确定与工装相对应的几个点,测量出相对于坐标系的这几个点的X、Y、Z数值并作记录;将数值输入计算机,让激光头运行到该数值在铺贴完成的复合材料件上显示的位置。用可以与复合材料成型件接触的写号笔做标记,然后用直尺将这几点相连,从而形成两条相交并垂直的直线,用胶带将直线延伸到零件外部,最后将零件转移到工装上,用外延的线与工装上的线对齐,从而完成了成型件的定位。本发明方法的目的就在于,解决了在转移过程中无法定位的问题,从而使这种,使用两种成型方式相结合的铺放方式得以实现。
本发明提供了一种氧化石墨烯增强镁基复合材料及其制作方法,涉及材料技术领域。包括以下步骤:将氧化石墨进行超声波分散处理,得到氧化石墨烯分散体;将氧化石墨烯分散体与溶剂、镁屑混合,然后在0.08~0.098MPa、35~100℃下进行干燥,得到屑状复合材料;其中,溶剂选自酒精、水、十六烷基三甲基溴化铵中的一种或多种,氧化石墨、溶剂、镁屑的用量比为0.25~0.30g:200mL:89.60~89.80g;将屑状复合材料加热至250~350℃并保温10~20min,再压制成型。本发明提供的氧化石墨烯增强镁基复合材料的制作方法工艺简单、成本低、镁废屑的回收利用率高。
一种建筑复合材料,按以下重量份数比制备而成,丙烯酸树脂5-7份、水泥15-20份、石灰粉5-10份、酚醛树脂胶10-15份、白面10-15份。使用方法,(1)将各组分按照计量标准称重配好,充分混合均匀制得复合材料?;(2)将模具里均匀涂抹上一层汽机油,倒入复合材料,自然晒干,即可。本发明采用以上配方制得的新型复合材料结实耐用,有很好的防火性和阻燃作用。
本发明提供的是一种耐高温高强镁基复合材料及其制备方法。按照质量百分含量为Al : 6%?9%,Ni : 1%?10%,其余为Mg的比例配置原料;将原料置于容器中以酒精作为介质,采用超声波震荡,震荡时间为10min?15min,震荡同时进行搅拌;将混合均匀后的原料在50℃?70℃温度下烘干,烘干时间8h?12h;采用粉末冶金真空热压工艺制备耐高温高强镁基复合材料,其工艺参数为:真空度6.67×10?3Pa、压强20MPa?30MPa、400℃?450℃热压20min?40min、550℃?650℃烧结15min?25min、冷却方式随炉冷却。本发明明显提高了Mg?Al基基体的耐高温力学性能,并一定程度上提升了其延伸率。
一种特种连接Cf/Al复合材料与TiAl的方法,涉及一种连接Cf/Al复合材料与TiAl的方法。本发明是要解决目前连接Cf/Al复合材料与TiAl时焊接方法加热温度高、压力大等问题导致Cf/Al复合材料中碳纤维和铝基体间发生严重界面反应、恶化母材性能,常规自蔓延连接使接头中产生大量脆性化合物,强度较低的技术问题。本发明:一、球磨混合;二、压坯;三、清洗;四、激光引燃自蔓延。本发明的优点:一、本发明方法不需要整体加热,能很好保持母材的优良特性在常温下即能完成,连接效率较高;二、本发明可以有效地缓解线膨胀系数差异所带来的残余应力,提高接头的性能、达到良好的冶金结合,能获得性能良好的接头。
本发明公开了一种短纤维增强拉挤复合材料太阳能组件边框,其特征在于,该太阳能组件边框通过拉挤成型工艺制备,包括短纤维、连续纤维和树脂,各组分的体积百分比为:短纤维5%-10%,连续纤维50%-80%,树脂10%-40%。还公开了该太阳能组件边框的制备方法。在此方法中添加短纤维增强体,以解决连续纤维增强拉挤复合材料作为太阳能组件边框使用时在垂直纤维方向强度不足的问题。连续纤维用树脂混合物浸渍,树脂混合物中均匀分散有体积百分比为5%-10%的短纤维,接着注入模具中拉挤出所需的太阳能组件边框。短纤维在连续纤维之间形成搭接,可改善型材垂直纤维方向的性能,不仅可保持顺纤维方向的优异性能,在垂直纤维方向同样保证了良好的力学性能。
一种石墨烯基纳米复合材料的制备方法,本发明涉及一种复合材料的制备方法。本发明是要解决现有技术制备石墨烯基纳米复合材料的方法难以定量控制金属氧化物在石墨烯表面负载量的问题。方法:一、制备氧化石墨烯;二、XPS测试分析;三、配制氧化石墨烯分散液;四、配制前驱体溶液;五、反应;六、洗涤、干燥。本发明通过XPS测试及C1s衍射峰的拟合分析,确定氧化石墨烯表面含氧官能团的种类和数量,能够定量控制金属氧化物在石墨烯表面负载量。本发明制备的石墨烯基纳米复合材料可应用于储能、光催化和传感器领域。
本发明涉及一种用于建筑的无机化学复合材料。新型镁质复合材料配方包括轻烧镁、氯化镁、集料、劲材和增强剂。其中,集料为锯末与粉煤灰按1∶1.5重量比的混合物;劲材为长20~40mm玻璃纤维或长40~70mm聚丙烯纤维;增强剂为聚丙烯酰胺乳液。并按一定顺序制成浆料浇注在特制模具里固化成型。它有不燃耐火、防水防蛀、高强耐用、耐蚀耐寒、质轻价廉、不变形、不返卤、无毒无害、制作方便的优点,可替代木、钢、石、塑、铝制品。
一种六边形轴头复合材料传动轴缠绕成型模具,涉及复合材料转动轴的制造技术领域。为解决现有的复合材料转动轴的方式采用毛坯进行车削加工,制造困难,但通过现有的制造方法制造出的复合材料转动轴可够承受的扭矩较小,在使用时出现断轴的现象,制造的质量较差的问题。芯轴的两端内部分别设有一个挡板,芯轴的一端与一号端部的一端固定连接,一号端部的另一端与一号封头的一端可拆卸连接,一号封头的另一端中心处设有通孔,一号连接杆的一端穿过一号封头与挡板连接,芯轴的另一端与二号端部的一端固定连接,二号端部的另一端与二号封头的一端可拆卸连接,二号连接杆穿过二号封头的另一端面与挡板连接。本实用新型适用于制造复合材料传动轴。
一种多级结构α‑Fe2O3/α‑MoO3空心球复合材料及其制备方法,本发明涉及MoO3复合材料及其制备方法。本发明是要解决多级结构氧化钼在掺杂和复合等修饰过程中多级结构难以保持的技术问题。本发明的多级结构α‑Fe2O3/α‑MoO3空心球复合材料是一种空心结构的微球,微球的壳层由α‑Fe2O3/α‑MoO3复合纳米板堆叠而成。制法:一、制备乙酰丙酮氧钼溶液;二、调节乙酰丙酮氧钼溶液的pH值;三、加入乙酰丙酮铁得到混合溶液;四、溶剂热反应;五、煅烧,即得。该复合材料对三乙胺气体的最低检出限为10ppb,可用于工业生产、鱼类加工及复杂环境中三乙胺气体的实时检测与监控领域。
本发明公开了一种MOF衍生的钴镍多孔碳复合材料电催化电极的制备方法,由Co/Ni‑MOF为支撑材料前驱体,经高温碳化,得到MOF衍生的钴镍多孔碳复合材料;所述钴镍多孔碳复合材料为碳化后Co/Ni‑MOF,即Co/Ni‑MOF为骨架碳化,所得材料的微观结构为中空结构,所得材料制备成电极片,具有电催化活性。其制备方法包括以下步骤:一、Co/Ni‑MOF的制备;二、MOF衍生的钴镍多孔碳复合材料的制备;三、电催化电极片的制备。作为电催化降解水中头孢曲松钠催化剂的应用,最大降解效率为96.75%,20次回收重复使用后,保留初始催化活性的82%。因此,本发明提高了催化剂的稳定性,在电催化应用、抗生素降解等领域具有广阔的应用前景。
一种高击穿和高介电的FPE基复合材料薄膜的制备方法,涉及FPE基复合材料薄膜技术领域。本发明的目的是为了解决以FPE为基体的传统复合材料薄膜的介电常数低,掺杂填料后复合薄膜的介电损耗和电导率存在明显增加以及击穿场强降低的问题。方法:将六方氮化硼纳米片加入到甲基吡咯烷酮溶液中,超声分散,得到混合溶液a;向混合溶液a中加入SiO2颗粒,超声分散,得到混合溶液b;将芴聚酯颗粒加入到混合溶液b中,搅拌1~2h,得到搅拌后的混合溶液b;将搅拌后的混合溶液b均匀涂覆在预处理过的基板的一个面上,再将基板加热并保温,最后冷却至室温,将基板上的薄膜剥离,得到高击穿和高介电的FPE基复合材料薄膜。
本发明提供了一种荧光Ag/AgCl纳米复合材料的制备方法与应用,属于荧光纳米材料制备技术领域。制备方法如下:(1)耐银解淀粉芽孢杆菌的筛选;(2)菌株与硝酸银共培养;(3)菌液的超声破碎处理;(4)离心收集上清液,过滤,烘干得到荧光Ag/AgCl纳米复合材料;(5)应用于痕量Cr6+的检测。本发明制备蓝色荧光的Ag/AgCl纳米复合材料大小均匀、稳定性好、水溶性好,相比较传统的物理化学等方法在原料的选取、反应条件的调控及后期处理等方面更加环保健康,避免了化学还原剂的使用。同时发现Cr6+可使Ag/AgCl纳米复合材料发生荧光猝灭,因此,该纳米材料可应用于高灵敏、高选择性的识别检测Cr6+,且检测过程简便快速,检测结果准确,为构建Cr6+检测的传感体系提供新的思路。
本发明提供了一种生物质炭‑双晶相金属氧化物(WO3)复合材料及其制备和应用,通过将特定的生物质炭与含钨化合物经过吸附、水热反应以及焙烧后,得到结构独特的复合材料,其不但具有多孔分级氧化物纳米结构,而且具有双晶相结构,即具有由片层状六方晶相WO3和花球状的单斜晶相WO3片组成的结构;该复合材料作为敏感材料用于检测空气中NOx时,不需要加热系统,可以在室温即20℃~35℃、湿度为20%~40%的条件下操作,并且在此条件下,该复合材料对浓度为100ppm的NOx气体的灵敏度高达74.16,对浓度低至0.1ppm的NOx气体的灵敏度大于1.12;并且,本发明提供的制备方法操作简单,成本低,便于推广。
本发明提出了含新型相函数的气凝胶复合材料全辐射性质同步测量方法。首先提出了准确描述具有多尺度特征的纳米气凝胶复合材料散射分布特征的新型散射相函数模型。以此为基础,基于辐射传递方程的求解获得纳米气凝胶复合材料半球光谱透射及反射率以及光谱双向反射、透射分布函数数据光学性能理论预测结果,结合实验测量的光学性能数据,采用模拟退火优化方法对其中涉及的光谱消光系数、光谱散射反照率、光谱散射相函数等全辐射性质参数群进行全局优化本发明解决了现有纳米气凝胶复合材料散射相函数缺乏或者不准确导致反演测量的辐射性质实验数据误差大的问题。
本发明公开了一种环氧树脂基复合材料和三元乙丙橡胶的共固化体系的制备方法,所述方法包括如下步骤:步骤一、碳纤维/环氧树脂基复合材料的制备;步骤二、三元乙丙橡胶的混炼;步骤三、将步骤一中制备的碳纤维/环氧树脂基预浸渍料积层与步骤二中混炼的三元乙丙橡胶一起放入模具中,然后在模压机上模压固化,获得碳纤维/环氧树脂基复合材料和三元乙丙橡胶的共固化体系;步骤四、将共固化体系在室温下放置12~48h。利用本发明制备的共固化体系制备得到的碳纤维增强环氧树脂与三元乙丙橡胶复合材料具有高温稳定性、力学性能优异、隔热性能好、强度高等特点,有望被广泛应用于航空航天、交通运输、医疗用品等领域。
本发明提供的是一种应用于光动力治疗的纳米复合材料及制备方法。(1)该上转换材料是可将近红外光转化为紫外-可见光,在有效传递给光敏药物分子的纳米粒子;(2)以三聚氰胺为前驱体,高温煅烧得到bulk?g-C3N4,再通过液相剥离法制备g-C3N4纳米片;(3)通过静电力作用将NaGdF4 : 30%Yb/0.3%Tm纳米粒子与g-C3N4纳米片结合制得纳米复合物,使光动力性能有了显著的提高。本发明将尺寸分布均一、分散性能良好的稀土上转换发光纳米颗粒与高稳定性、高光致发光量子产率的g-C3N4纳米片通过静电力结合,制备一种水溶性良好的、可被近红外光激发的上转换发光纳米复合材料,并实现了在光动力治疗领域的应用。
一种氧化锌纳米棒?石墨烯纳米片复合材料的制备,涉及一种氧化锌纳米棒?石墨烯纳米片复合材料的制备方法。本发明是要解决现有氧化锌纳米棒检测尿酸应用方面受限的问题。本发明制备方法如下:一、水热合成法制备氧化锌纳米棒;二、化学气相沉积法制备三维泡沫石墨烯;三、超声分散制备氧化锌纳米棒?石墨烯纳米片分散液; 四、自动喷涂制备氧化锌纳米棒?石墨烯纳米片/ITO电极。本发明制备的一种氧化锌纳米棒?石墨烯纳米片具有高的比表面积、优异的电导性和良好的生物相容性等特点,可用于高灵敏、高选择性的检测尿酸。
本发明涉及一种三相复合的环氧树脂纳米复合材料及制备方法。环氧树脂是聚合物基复合材料中应用最广泛的,具有优良的力学性能、热稳定性,应用于涂料、复合材料中,现有的环氧树脂固化后交联密度高,存在内应力大、质脆,耐冲击性和耐湿热性较差等缺点,限制了它在某些高端技术领域的发展和应用。本发明其组成包括:膨胀石墨、高锰酸钾、浓硫酸、硝酸、去离子水、双氧水,所述的膨胀石墨的重量份数为1,所述的高锰酸钾的重量份数为4-6,所述的浓硫酸的重量份数为60-75,所述的浓硝酸的重量份数为20-25,所述的去离子水的重量份数为160-200,所述的双氧水的重量份数为10-30。本发明用于三相复合的环氧树脂纳米复合材料。
一种氧化锌纳米线阵列/泡沫石墨烯复合材料的制备方法及其应用,涉及一种复合材料的制备方法及其应用。本发明是要解决现有材料应用于L-多巴检测时灵敏度低和检测限较高的技术问题。本发明的制备方法如下:一、化学气相沉积法;二、水热合成法。一种氧化锌纳米线阵列/泡沫石墨烯复合材料可以作为电极材料检测L-多巴。本发明主要用于制备一种氧化锌纳米线阵列/泡沫石墨烯复合材料。
一种钎焊非氧化物陶瓷与复合材料高温钎料及其制备方法,它涉及一种高温钎料及其制备方法。本发明要解决现有焊接非氧化物陶瓷及其复合材料,接头在500℃以上高温钎料性能不可靠的问题。本发明高温钎料按重量份数是由47~52份的Ni、25~28份的Cr、18~21份的Nb、0~2份的B、0~2份的Ti和0~6份的W组成;方法为:一、称取上述组分,混合得混料;二、按球料质量比为8~20:1比例放入磨球,以250~350r/min的速度间歇性球磨4~20h、填料比为45%~55%;即得。本发明获得的接头室温和800℃高温抗剪强度分别为18~48MPa和11~27MPa。本发明应用于航空航天领域。
一种提高碳纤维/环氧树脂复合材料界面性能的方法,它涉及一种提高复合材料界面性能的方法。针对现有提高碳纤维复合材料界面性能方法,存在界面改性效果差,对纤维增强体损伤较大问题。本发明将碳纤维放入密闭容器中抽真空至压力低于0.2个标准大气压,再冲入惰性气体达1个标准大气压,再抽出惰性气体,将密闭容器经高能射线辐照,辐照剂量率为0.6~6KGy/h,辐照剂量为60~800KGy,之后,抽去密闭容器内的惰性气体,在负压下将5~100wt%丙烯酸溶液吸入密闭容器中浸没碳纤维反应后,取出碳纤维用去离子水冲洗、煮沸、烘干后与环氧树脂热压复合成型。经本发明制备的碳纤维/环氧树脂复合材料的层间剪切强度提高了5~19%、弯曲强度提高了3~16%。
纤维增强复合材料褶皱夹芯圆台壳的热压成型方法,它涉及复合材料成型设计领域。本发明解决了目前尚未有制备褶皱夹芯圆台壳工艺的问题。本发明的制备方法包括以下步骤,一、褶皱芯子的制备:清洗组装芯子模具;涂抹脱模剂;预浸料的裁剪与铺层、折叠、固化;褶皱芯子的脱膜;二、内面板的制备:清洗面板模具;涂抹脱模剂;组装内面板模具主体;预浸料的裁剪与铺层、铺设、固化;内面板的脱模;三、外面板的制备:纤维增强复合材料外面板的制备与步骤二基本相同;四、褶皱芯子与内外面板的组装、胶结和二次固化:胶膜的粘贴;褶皱芯子与内外面板胶结;褶皱夹芯圆台壳的固化;面板模具的拆卸。本发明用于制备纤维增强复合材料褶皱夹芯圆台壳。
预浸带预热成型的碳纤维复合材料回转件缠绕工艺。现有干法缠绕技术中存在着的温度难控制问题,且缠绕成型所用预浸布切割方法的缺省以及缠绕成型模具缺少加热方式的问题,包括将预浸布分切为预浸带;清洁模具,涂覆脱模剂;模具加热;使用缠绕机将分切出的碳纤维复合材料预浸带缠绕于回转模具表面形成碳纤维层;密封、抽真空;将其加热固化,最后冷却至室温;将制件从模具上脱离;对制件进行切割打磨,得到碳纤维复合材料回转件。本发明方法所加工制成的复合材料回转件,具有较高的纤维含量,且切割加工的纤维带缠绕后纤维分布均匀,厚度可控,具有较高的比刚度与比强度,优异的轴向承载和传动大扭矩的能力。
一种碳纤维增强碳化硼复合材料的制备方法,它涉及一种碳化硼复合材料的制备方法。本发明要解决现有碳纤维增强碳化硼复合陶瓷材料的制备工艺复杂,烧结致密度低,力学性能低的问题。制备方法:一、碳化硼浆料的制备;二、碳纤维布浸渍碳化硼浆料;三、碳纤维布的层叠;四、碳纤维增强碳化硼陶瓷复合材料的烧结。本发明用于碳纤维增强碳化硼复合材料的制备。
一种可提高聚醚醚酮及其复合材料胶接性能的协同表面处理方法,它涉及化学材料领域,本发明解决现有技术中针对聚醚醚酮及其复合材料表面处理效果差、胶接强度低以及胶接耐久性差的难题。包括机械打磨、酸化刻蚀和电晕处理的多尺度协同作用,所述机械打磨为使用砂纸进行打磨处理,所述酸化刻蚀使用的是重铬酸盐的浓硫酸溶液,所述电晕处理是常压低温等离子体电晕处理。本发明记载的针对聚醚醚酮及其复合材料表面的多尺度协同处理方法具有操作简单、可操作性性强以及处理效果优异的特点,可大幅度提高聚醚醚酮及其复合材料的表面浸润性、胶接强度和胶接耐久性。本发明应用于材料处理领域。
本发明提供了一种氮化碳‑石墨烯复合材料及其制备方法和应用,所述氮化碳‑石墨烯复合材料的制备方法包括以下步骤:(1)将三聚硫氰酸、硫脲与水混合搅拌,之后烘温得到块状物,将块状物粉碎升温并保温,得到硫掺杂多孔蜂窝状氮化碳;(2)将步骤(1)得到的硫掺杂多孔蜂窝状氮化碳分散得到氮化碳溶液,将其与石墨烯‑HCl分散液混合搅拌,得到所述氮化碳‑石墨烯复合材料。本发明提供的氮化碳‑石墨烯复合材料比容量高,表面反应活性高,导电性能强。
一种复合材料夹层结构用可共固化轻质高刚性芯材及其制备方法和应用,它涉及一种可共固化轻质高刚性芯材及其制备方法和应用。本发明是要解决复杂形状薄壁复合材料夹层结构成型工艺困难及夹层结构边缘需要增加强度的问题,提供了一种可共固轻质高刚性芯材,同时免去复合材料面板与芯材之间胶黏剂的使用。本发明的芯材是由主体树脂、增韧剂、轻质材料、固化剂和填料制成,制备方法为:主体树脂、增韧剂、轻质材料、固化剂和填料混合均匀,得到胶料;胶料经烘箱中预热,然后在由胶膜压延机上用载体热压延成膜,即得到轻质芯材。其用于制备航空航天领域耐高温复合材料结构件。
选择性激光熔化成形法制备TiC增强镍基复合材料的方法,它属于复合材料制备领域。本发明是为了提高镍基高温合金的高温力学性能。本发明制备方法是将镍基合金与增强基合金按照配比分别称重;将称重的粉末放置在低温行星球磨机制备镍基混合粉末;将所制备的镍基混合粉末在选择性激光熔化成形机器上制备镍基复合材料。本发明的优点为能够提高镍基合金的高温力学性能,增强材料的强度和硬度,提高其综合力学性能;通过选择性激光熔化成形机器,能够灵活的改变工艺参数,从而能够直接成形镍基复合材料的工件。
一种高介电耐高温微波介质复合材料的制备方法,本发明涉及复合材料制造技术范围,涉及一种微波介质材料。本发明要解决传统制备方法陶瓷固相含量低的技术问题。方法:一、用硅烷偶联剂对陶瓷填料进行表面改性;二、将陶瓷粉体与树脂粉体混合;三、模压成型。本发明所制备的复合材料具有介电常数高、损耗低、耐高温、热导率高、热膨胀系数小、简单环保的特点。本发明用于制备高介电耐高温微波介质复合材料。
中冶有色为您提供最新的黑龙江有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!