本发明提供了一种二维硒化钼功能材料电解水制氢催化剂的制备方法,属于电催化材料的制备方法技术领域。一、制备直径为430纳米的单分散二氧化硅实心球;二、将制备得到的二氧化硅小球有规则的组装排列在空气和水的界面上,单分散二氧化硅小球水‑乙醇悬浮液滴加到悬浮在去离子水面上的玻璃片上,单分散二氧化硅小球沿着玻璃片边沿逐渐在水面上有规则的进行排成形成单层阵列,最后二氧化硅小球有序结构阵列被二氧化硅/硅基底接取,反复上述操作;三、采用化学气相沉积技术生长二硒化钼/二氧化硅壳核复合材料有序结构阵列;四、去除内部的二氧化硅模板得到二硒化钼功能材料分等级空心球有序结构阵列。
本发明涉及橡胶生产技术领域,更具体的说是橡胶功能材料制品加工用快速切胶机,橡胶功能材料制品加工用快速切胶机的刀具能够在横向切割的同时转换为多个刀片,并同时进行多个纵向切割。将橡胶放置在料道中,根据横切或者纵切,使电机带动左端的齿轮转动,左端的齿轮带动链条来带动另外三个齿轮转动,带动三个侧刀和三个竖刀转动形成三个刀具或者使三个竖刀并列共同组成一个刀具。
本发明涉及的是磁控微晶各向异性功能材料制备方法,它包括将可磁化的预置籽晶的晶体原料装入柱型坩埚中,放入垂直加热炉中心通道的上端,在高温加热区上方设置强磁场;开启强磁场,将柱型坩埚旋转并下移,先到达高温区,使可磁化的预置籽晶的晶体原料熔融,形成熔体;柱型坩埚继续旋转下移,到达低温区底部,熔体开始冷却结晶;由于强磁场极化作用,形成单向异性功能材料;由于旋转离心力的作用,越靠近柱型坩埚外壁结晶体受到离心挤压力越大,结晶体密度也越大,可形成多层状的套筒形同心圆柱状结晶体。本发明采用外强磁场对微晶形成过程中的材料进行磁极化,使粒子、分子、原子及电子等磁矩强制定向排列,形成各向异性的功能材料。
一种氧化亚铜/还原氧化石墨烯复合功能材料的制备方法,它涉及一种复合功能材料及制备方法。本发明是要解决现有制备氧化亚铜/还原氧化石墨烯的方法对环境有污染并且合成工艺复杂的问题。制备方法:一、制备氧化石墨烯分散液A;二、制备铜盐与葡萄糖的混合液B;三、制备碱溶液C;四、将A和B混合,得到混合液D,五、将D和C混合,得到混合液E;六、将混合液E放在加热器上进行反应;然后离心、洗涤,吹干即完成。本发明的方法所需时间短,能量消耗小,原料易得,工艺简单,条件温和,对环境无污染。本发明适用于功能材料中的石墨烯基杂化功能化材料领域。
双功能化单膦氧取代芴基光电功能材料及其制备方法和应用,它涉及有机光电功能材料及其制备方法和应用,本发明要解决蓝光材料载流子注入传输平衡性与高三线态能级及蓝光发射无法同时满足的问题,本发明的双功能化单膦氧取代芴基光电功能材料结构如下:制备方法为:以芳香单膦氧苯基芴单体为核,以具有空穴传输性能的基团对芴2,7位进行修饰,合成了一系列具有双极特性的三元芴基芳香单膦氧光电材料。其应用在有机电致蓝光器件中。本发明以不同的空穴传输基团2,7位修饰,对核的激发态能级进行调控,构建具有双极载流子传输性能的三元高效有机蓝光功能材料。
本发明是一种太阳光谱全吸收碳基功能材料的设计方法。所述方法为选择碳材料和负载材料基元,构建碳材料和负载材料基元的结构模型,对结构模型进行优化并计算光学性质;以光学响应区间为主要依据筛选功能基元,构造碳基功能材料;通过调节组成和比例,优化稳定性和光学性质,获得太阳光谱全吸收的碳基功能材料。本发明为实验研究提供功能基元和序构等信息,避免大量试错实验造成的成本损失,可应用于光催化、太阳能电池、光热材料、光蒸发水、超黑材料等与光吸收相关的研究和应用领域,以及与精密光学设备、感知等相关的航空航天领域。
一种混凝土调粘稳泡功能材料及其制备和使用方法,本发明涉及混凝土添加剂,本发明是要解决现有的冬季施工过程中混凝土含气量经时损失和振捣导致气泡破灭的技术问题。本发明的混凝土调粘稳泡功能材料包括液膜增强剂、浆体调粘剂、絮凝促进剂和浆体增强剂;其中所述液膜增强剂为改性硅树脂聚醚微乳液、椰子油脂肪酸二乙醇酰胺中的一种或两种的组合;所述的浆体增强剂为石灰石粉。制法:将液膜增强剂配制成水溶液,加入到浆体调粘剂、絮凝促进剂与浆体增强剂的混合物中,混匀烘干即得。使用时将混凝土调粘稳泡功能材料加入到含有引气剂的混凝土浆料中混均即可。加入该功能材料后的混凝土的抗离析性能比不加的提高3倍以上。可用于建筑领域。
一种基于二维功能材料制备柔性光探测器的方法,本发明涉及光探测器的制备方法。本发明是要解决现有的现有的柔性光探测器的光刻工艺技术成本高且难以实现批量化生产的技术问题。方法:一、制备半导体材料单晶硒化镓或单晶硫化镓;二、用思高胶带在半导体材料表面粘贴-剥离;三、将二维结构半导体材料转移至基底上;四、将铜制掩膜覆到经步骤三处理的基底上,沉积金层和铬层;再去掉掩膜退火处理;五、利用半导体测试仪,筛选出步骤四得到的光探测器半成品中对紫外光有光电响应的电极对,即得到基于二维功能材料制备柔性光探测器。该光探测器紫外光响应度高达100AW-1以上。可作为微电子器件、光敏器件用于信息传输和储存领域。
双功能化双膦氧取代芴基光电功能材料及其制备方法和应用,它涉及有机光电功能材料及其制备方法和应用,本发明要解决现有芴基芳香膦氧光电功能材料,芳香膦氧基团的长轴修饰,导致材料的三线态能级和蓝光发射无法保持的问题。本发明的双功能化双膦氧取代芴基光电功能材料结构如下:制备方法为:以芳香双膦氧苯基芴单体为核,以具有空穴传输性能的基团(咔唑等)对芴2、7位进行修饰,合成了一系列具有双极特性的三元芴基芳香双膦氧光电材料。其应用在有机电致蓝光器件中。本发明利用了间接连接有机膦氧基团策略,构建芳香双膦氧苯基芴单体核。以空穴传输基团外围修饰,构筑三元双极磷光主体材料;并增强其发光性能提高材料的荧光量子效率。
本发明公开了一种用于地下水原位强化生物脱卤的聚氨酯复合载体自发电功能材料的制备方法及应用,属于地下水污染修复领域。本发明解决现有地下水污染修复方法中厌氧还原脱卤反应速率慢、难以利用氢气以外的物质作为电子供体、额外投加复杂有机碳源易造成地下水二次污染和安全隐患的问题。本申请首先将自发电功能材料负载到聚氨酯,然后将聚氨酯复合载体自发电功能材料负载脱卤呼吸菌,将负载脱卤呼吸菌的聚氨酯复合载体自发电功能材料作为生物反应格栅填料用于卤代有机物污染地下水的原位生物修复。本发明提供的聚氨酯复合载体自发电功能材料可以为脱卤呼吸菌提供电子供体,同时刺激细胞代谢并提高微生物活性,生物载体强度高且无二次污染。
本发明提供了一种固载型离子液体磁性功能材料的制备方法。本发明提供的方法适用的离子液体种类多,通过负载不同种类的离子液体能够得到不同种类的固载型离子液体磁性功能材料,在保证离子液体催化特性的同时,增加了离子液体磁性功能材料的种类。此外,本发明提供的固载型离子液体磁性功能材料可以通过外加磁场使其从液相中轻松分离,易于洗涤干燥转移,易于分离回收再利用,克服了均相催化剂不易分离回收且污染环境的难题,便于工业规模化生产和应用。同时,本发明利用硅材料比表面积大、吸附能力强的特性,合成Fe3O4@SiO2颗粒再固载离子液体,使所得固载型离子液体磁性功能材料具有特异性吸附性能,拓展了其在吸附材料领域的应用。
利用OM、XRD、SEM以及电子万能力学试验机等材料分析测试方法,研究了Mg-5Li-3Al-2Zn-xNd(X=0,0.4,0.8,1.2,1.6,2.0,wt.%)合金铸态和挤压态的显微组织和拉伸性能。研究表明:Nd元素对铸态合金的晶粒细化效果较明显,当Nd含量从0增加到2.0%时,合金的平均晶粒尺寸由113μm减小到76μm。随着Nd含量的增加,合金中不仅有块状的Al2Nd,还出现了针状Al11Nd3。挤压态合金发生了动态再结晶,由于变形强化和细晶强化的作用,挤压态合金的抗拉强度和塑性明显优于铸态合金。
本发明提供了一种复合法弧齿锥齿轮铣刀及其加工工艺,目的就是为了解决上述之不足而提供。本发明采用热等静压粉末冶金的方法直接将高合金粉末冶金高速钢与普通高速钢材质(工具钢及低合金高速钢)在高温高压(130Mpa)的环境下,使得粉末冶金高速钢100%致密化的同时且两种材质紧密结合,在接合面两种材质充分侵入融合成整体结构,改善了因传统焊接造成的结构缺陷,并且两种材质在热处理过程中也不会因其结合部分材质物理特性造成溶蚀开焊。
本发明的目的是为了解决现有钛合金带极埋弧堆焊用钛合金实心焊带成分不易调控以及堆焊熔覆层难以满足强度、塑性、韧性、耐磨性和耐腐蚀性等综合性能指标的技术问题,而提供一种TC4钛合金金属粉芯药芯焊带及其制备方法。
随着科技的发展,车身重量越来越轻,轨道车辆的时速也越来越高,使得出行更为便捷的同时,轨道车辆尤其是地铁和高速列车所发出的机械振动噪音污染也越来越严重,且高速列车运行过程中往往需要从高寒地带到高温地带,这是要求减振隔声材料具有高性能、低密度、宽温域(-40℃~60℃)、阻燃、环保、占用空间小、施工便捷等多方面要求。因此,提供一种具有低密度,高性能,同时在阻燃、环保诸多方面具有适应性的减振隔音材料是十分必要的。
本实用新型为了解决现有技术存在的问题,进而提供用于自动变速器的铁基粉末冶金支架结构;
本发明涉及金属基复合材料技术领域,特别涉及一种TC4余粉再利用制备钛基复合材料的方法。
本发明是解决现有的方法制备陶瓷颗粒增强高温合金复合材料球形度差、流动性能不佳、氧含量高的技术问题,而提供一种纳米陶瓷增强高温合金球形微粉的制备方法。该方法制备的纳米陶瓷颗粒增强高温合金球形微粉球形度好、流动性佳、粒度分布均匀、氧含量低。
中冶有色为您提供最新的黑龙江有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!