本发明公开了一种β-二酮单亚胺钒烯烃聚合催化剂及制备方法和该催化剂在催化乙烯聚合、乙烯与降冰片烯共聚合、乙烯与α-烯烃或降冰片烯的共聚合中的应用。在甲酸的催化作用下,β-二酮类化合物与苯胺或苯胺的衍生物在甲醇溶液中进行缩合反应,得到西佛碱;在无水无氧的条件下,将上述西佛碱与正丁基锂进行反应,得到负离子配体;在无水无氧条件下,再将上述负离子配体与三氯化钒进行配位反应,得到本发明提供的β-二酮单亚胺钒烯烃聚合催化剂。在二乙基氯化铝或改性甲基铝氧烷的作用下,本催化剂可催化乙烯聚合、乙烯与α-烯烃或降冰片烯的共聚合。
本发明涉及一种低温聚合法制备的高容量复合正极材料,其特征在于制备方法包括以下步骤:a)将通过众所熟知的方法合成的富锂材料xLi2MnO3·(1-x)LiMO2(M=Co、Ni1/2Mn1/2、Ni1/3Co1/3Mn1/3)、对甲基笨磺酸钠(PTSNa)和单体吡咯(PY)按照一定的化学计量比溶于适当的去离子水中,然后在室温下进行磁力搅拌;b)将上述所得溶液转移至低温环境中,c)将一定浓度的氧化剂溶液缓慢地滴入步骤b)所得溶液,再次进行磁力搅拌,d)将步骤c)所得溶液用去离子水洗涤、过滤后,在烘箱中烘烤,即可得富锂//聚吡咯[xLi2MnO3·(1-x)LiMO2//PPY,其中M=Co、Ni1/2Mn1/2、Ni1/3Co1/3Mn1/3]复合材料。其制备方法简单,电导率高,聚吡咯分布均匀。通过低温聚合法制备的复合材料电化学比容量较高,循环和倍率性能较好。
本发明提供了一种全固态聚合物电解质膜的制备方法,属于化学电源技术领域。包括以下步骤:将聚偏氟乙烯与碱混合后球磨,得到改性聚偏氟乙烯;将所述改性聚偏氟乙烯、有机溶剂、碳酸亚乙烯酯、引发剂和锂盐混合进行聚合反应,得到铸膜液;将所述铸膜液进行干燥成膜,得到所述全固态聚合物电解质膜。本发明在碱的作用下通过机械力化学固相反应,使PVDF部分脱氟,制备出主链上含有碳碳双键、羟基或羰基的改性PVDF,改性后的PVDF结晶度明显下降,同时改性聚偏氟乙烯链中的羟基,羰基容易与低电子云的Li+发生相互作用,促进锂盐的离解,进一步提高了电导率。
本发明公开了一种含有三氟甲基的β-二酮单亚胺钒烯烃聚合催化剂及制备方法和该催化剂在催化乙烯聚合、乙烯与降冰片烯共聚合、乙烯与α-烯烃或降冰片烯的共聚合中的应用。在甲酸的催化作用下,含有三氟甲基的β-二酮类化合物与苯胺或苯胺的衍生物在甲醇溶液中进行缩合反应,得到西佛碱;在无水无氧的条件下,将上述西佛碱与正丁基锂进行反应,得到负离子配体;在无水无氧条件下,再将上述负离子配体与三氯化钒进行配位反应,得到本发明提供的含有三氟甲基的β-二酮单亚胺钒烯烃聚合催化剂。在二乙基氯化铝或改性甲基铝氧烷的作用下,本催化剂可催化乙烯聚合、乙烯与α-烯烃或降冰片烯的共聚合。
本发明属于有机化学领域,具体涉及一种双酚S二缩水甘油醚的制备方法。其是采用二步法,第一步以双酚S作为原料、环氧氯丙烷既为原料也为溶剂,季铵盐、三苯基磷酸盐等作为催化剂,按一定的比例加入到适当大小的三颈瓶中,加热,搅拌;反应溶液升至一定温度后恒温一定时间,将剩余未发生反应的环氧氯丙烷减压蒸出。第二步加入有机溶剂,并将配制好的一定浓度的氢氧化锂、氢氧化钠或氢氧化钾的碱液加入到反应体系中,升温至60~80℃,保持2~9个小时,然后倒入去离子水中出料,去掉有机层,去离子水洗涤至无Cl-,抽滤,真空烘干,得到白色固体,产率85-95%。与传统方法相比,本方法所采用的路线具有产率高,纯度高,成本低等特点。
本发明公开了一种用于制备稀土掺杂LiYF4发光材料的方法及其应用。所述方法包括:使包含锂源、硝酸钇、铵源和水的第一混合反应体系于200℃发生水热反应48h,制得用于制备稀土掺杂LiYF4发光材料;其中,所述锂源、硝酸钇与铵源的摩尔比为4∶1∶8。本发明采用水热法一步合成LiYF4,操作简单,技术要求低,成分易控,大大降低了成本,通过调整各反应物的摩尔比例,有效地消除了LiYF4生成过程中存在LiF杂相的不佳影响,通过高温水热反应,导致了在晶体生长过程中YF3向LiYF4的相变,避免了温度调控不准确而生成YF3的弊端,从而最终稳定合成了发光性能良好的稀土掺杂LiYF4发光材料。
一种氮全掺杂的碳自包覆半导体金属氧化物与石墨烯复合电极材料及其制备方法,属于锂离子电池技术领域。该材料能够在能源领域,特别是在动力电源锂离子电池领域中得到应用。本发明采用溶剂热的方法先得到有机金属化合物与石墨烯的复合物,然后在氨气存在的气氛中热处理得到氮全掺杂的碳自包覆半导体金属氧化物与石墨烯复合电极材。该合成方法简单易行,且更重要的是在整个合成过程中不需要额外加入其它碳源,由金属有机前驱体中的有机部分直接热分解碳化自包覆在金属氧化物纳米粒子的表面,另外金属氧化物纳米粒子是由前驱体中金属部分的热分解转化而来的,在整个化学变化过程中伴随着氮元素的掺杂。
本发明公开了一种β-酮亚胺钒烯烃聚合催化剂及制备方法和该催化剂在催化乙烯聚合、乙烯与降冰片烯共聚合、乙烯与α-烯烃或降冰片烯的共聚合中的应用。在甲酸的催化作用下,β-醛酮化合物与苯胺或苯胺的衍生物在甲醇溶液中进行缩合反应,得到西佛碱;在无水无氧的条件下,将上述西佛碱与正丁基锂进行反应,得到负离子配体;在无水无氧条件下,再将上述负离子配体与三氯化钒进行配位反应,得到本发明提供的β-酮亚胺钒烯烃聚合催化剂。在二乙基氯化铝或改性甲基铝氧烷的作用下,本催化剂可催化乙烯聚合、乙烯与α-烯烃或降冰片烯的共聚合。
一种多壁碳纳米管/有序介孔碳复合材料、制备方法及其应用,属于复合材料制备技术领域。其首先是将介孔二氧化硅加入到去离子水或者有机溶剂中,再加入过渡金属盐获得混合物,搅拌加热得到过渡金属修饰的介孔二氧化硅;将可聚合的低分子量化合物溶于有机溶剂或者混合有机溶剂中,然后将该溶液置于两口圆底烧瓶中并加热搅拌;将过渡金属修饰的介孔二氧化硅放置在密封的管式炉的不锈钢管内,然后对两口圆底烧瓶和排气管线进行升温,再对管式炉进行程序升温,经高温聚合热解,再进行酸处理,离心分离和真空加热干燥,得到含多壁碳纳米管和有序介孔碳的复合材料,可以作为锂离子电池负极材料或者作为锂离子电池负极材料添加剂得到应用。
本发明涉及一种基于官能团石墨烯还原的柔性导热膜的制备方法,其特征在于按重量百分比由2%~10%的石墨烯微片和90%~98%的微孔滤膜组成;其中石墨烯微片是氧化石墨烯或氮掺杂石墨烯微片,厚度为5 nm~80 nm,片径为1μm~5μm;其通过反复真空过滤填充的方法,使石墨烯微片嵌入微孔滤膜的孔隙中,方法简单,利于导热膜的大面积制备。该导热膜可根据锂电池的外形进行一定程度的弯曲,进而使其与锂电池外表面紧密地贴合,以达到更好地散热效果。
本发明提供了一种碳纳米管‑介孔碳/硫复合材料的制备方法,属于锂硫电池正极材料技术领域。本发明提出一种碳纳米管‑介孔碳/硫复合材料的制备方法。以经过预处理的多壁碳纳米管作为基体、葡萄糖作为水热碳源,通过水热反应制备具有介孔结构的同轴碳纳米管‑碳材料,采用热熔载硫的方法将硫负载到具有介孔结构的同轴碳纳米管‑碳材料上得到碳纳米管‑碳/硫复合材料,将其用作锂硫电池正极材料,可有效地限制活性物质的损失。
一种制备稻壳基负极材料的方法,属于生物质能源化工领域,具体步骤为:(1)将稻壳粉碎,在100℃‑120℃稀酸水解0.5h‑1h制备木糖溶液和水解渣;(2)水解渣经氯化锌浸渍、活化制备初级负极材料;(3)经电极沥青改性处理制备C/SiO2多孔负极材料。与现有技术相比,本发明的方法优点如下:(1)以农副产品稻壳为原料,采用稀酸水解预处理,调控碳和硅的比例,解决了热解炭中内外层二氧化硅和炭分布不均匀,内层大块炭存在,因微观结构不同而引起嵌锂和脱锂不同步降低比容量的的难题;(2)利用沥青处理初级负极材料,提高了导电性;加固了炭结构,提高了抗粉化能力;覆盖了表面官能团,避免了漏电流,提高了循环稳定性。
本发明公开了一种螺浆烷类化合物连续合成的方法。该方法包括以下步骤:以1,1‑二溴‑2,2‑氯甲基环丙烷或其衍生物为原料,通过连续化反应,与金属锂试剂合环,制备螺浆烷类化合物。应用本发明的技术方案,使用连续反应设备,连续进料,连续反应,连续转移,连续淬灭,后处理甚至可得到90%以上分离收率,实现了螺浆烷的高效制备。另外,该连续工艺将反应时间缩短,解决了放大生产中产品在碱性条件下不稳定,随反应时间长而变坏的难题;且连续工艺的使用,极大的降低了反应中使用锂试剂的危险性,更有益于放大生产。
本发明提供了聚环氧乙烷改性聚合物,属于锂电池电解质膜技术领域。本发明提供的聚环氧乙烷改性聚合物具有式I所示结构。本发明提供的聚环氧乙烷改性聚合物中引入了功能性‑NH‑CO‑NH‑或‑NH‑CS‑NH‑基团,形成了分子间特殊的Z字形氢键,不仅加强了PEO链段之间的相互作用,抑制其有序的螺旋形排布;同时能够增强电解质膜的机械性能。而且,引入的活性‑NH2封端的长链端基的位阻效应大,阻碍了PEO主链在室温下的结晶,聚环氧乙烷改性聚合物与锂盐组成的固态电解质膜在室温下同时具有高的离子电导率以及优异的机械性能。
本发明公开了一种通过掺杂纳米三氧化二铝提高硫充放电循环能力的方法及应用,涉及锂硫电池正极复合材料制备领域。单质硫和纳米三氧化二铝混合均匀,纳米三氧化铝包裹在单质硫的表面,形成一种稳定的复合材料。选用单质硫与纳米三氧化二铝以一定比例混合,经球磨、熔融扩散后,得到硫/纳米三氧化二铝复合材料。该法不仅可以制得电化学性能优秀的硫/纳米三氧化二铝复合材料,而且合成方法简单,能耗低,可控性好,产率高,成本低廉,适合于规模化生产。本发明还公开了所述的硫/纳米三氧化二铝复合材料的应用,用于锂硫电池的正极材料,具有放电比容量高、循环性能稳定的特点。
本发明涉及锂离子电池技术领域,是一种以硅藻土为原料制备多孔硅/二氧化钛复合负极材料的方法,其特点是,包括以纯化处理后的硅藻土为原料,通过水解法和镁热还原法制备得到多孔硅/二氧化钛复合材料。其制备方法的流程科学合理,简单适用,成本低;制备得到的复合负极材料可直接用作锂离子电池的负极材料,具有良好的循环稳定性,在100mA/g的电流密度下测试,其首次可逆比容量为1321.0mAh/g,50次循环后容量维持在774.3mAh/g左右,电化学性能优异。
本发明涉及供水设备技术领域,公开了一种基于互联网的供水检测装置,包括水管、连接阀、检测套筒、水量检测表;位于连接阀左右两侧的水管上分别滑动连接有检测套筒,位于右侧检测套筒的内顶部固定安装有一组锂电池组,位于锂电池组与控制箱之间的检测套筒上向外设置有一组信号发射器,插销的末端固定安装有金属凸块,插槽的内侧固定安装有向内凹陷的金属板,靠近左侧水管端部的水管的上侧分别设置有检测水管内部水压的水量检测表和用于检测水管内部的水流情况压力表,位于检测套筒下侧的内部固定安装有一组集水盘,集水盘的一侧凹陷处设置有水分检测仪。本发明的优点是:自动化检测,信号结果自动化传输,速度快,效率高。
本发明提供了一种羟基氧化铁纳米棒/氧化石墨烯(FeOOH/GO)复合材料及其制备方法与应用。FeOOH/GO的制备方法为:首先将六水三氯化铁、氧化石墨烯加水溶解均匀;再加入高锰酸钾80℃反应4h后离心、洗涤、干燥可得到负载超细FeOOH纳米棒的氧化石墨烯。本发明提供的负载超细FeOOH纳米棒的氧化石墨烯制备工艺简单、合成条件温和、制备成本低;其作为锂离子电池的电极材料,具有高的比容量和能量密度,以及优异的循环稳定性,在锂离子电池等储能装置中具有广泛的应用前景。
一种智能服务机器人控制系统,涉及智能化控制领域。本发明包括:上位机、主控制器、串口TTL转USB接口芯片、8个光电开关、2个舵机、RGB灯带、惯性测量单元、行走电机、霍尔传感器、锂电池、激光雷达、麦克风阵列、温度传感器和湿度传感器。主控制器为本发明的智能服务机器人控制的核心,用于实现光电开关控制、舵机控制、RGB灯带控制、惯性导航数据获取、行走电机控制、锂电池保护、温湿度数据采集等功能。主控制器通过串口TTL转USB接口芯片与上位机连接,只需插入USB连线即可。本发明具有可靠性好、抗干扰能力强、自主移动导航蔽障、语音交互等优点。
本发明涉及一种基于分布式能源的加油站和充电桩联合系统,包括环境调节系统、分布式能源系统和充电系统三个模块,主要由燃烧式机械动力装置、发电机、储放电系统、充电桩、电量调节器、朗肯循环系统、溴化锂制冷系统、换热器、三通阀、四通阀、流体泵和控制单元等组成,利用燃烧式机械动力装置带动发电机给储放电系统和充电桩供电,同时利用朗肯循环系统和溴化锂制冷系统对燃烧式机械动力装置排气的能量进行回收,在提高发电效率的同时可以实现制冷、制热等环境调节的作用,解决电动车充电难问题,并且达到提高能源利用率的有益效果。
偏压法电光调Q双波长激光器,涉及一种激光器,尤其是涉及一种偏压法电光调QNd:YAG1064nm和1319nm双波长激光器。采用单铌酸锂电光调Q晶体,偏压加压式电光调Q方式对1064nm和1319nm双波长激光同时进行电光调Q,根据调Q晶体所加电压偏离1064nm激光λ/4主电压后通过起偏器损耗的机理,对1064nm强谱线进行合理抑制,从而获得1064nm和1319nm双波长激光动态输出。整机设计有效简化了激光器结构,降低了Nd:YAG1064nm和1319nm双波长激光同时电光调Q的难度。该方法具有全面、准确、方便等优点,适用于双波长激光器电光调Q技术研究。可以应用到激光雷达、激光医疗等领域。
本发明涉及一种β-羟基丙烯亚胺钒烯烃聚合催化剂及制备方法和该催化剂在催化乙烯聚合、乙烯与降冰片烯共聚合、乙烯与α-烯烃共聚合中的应用。在甲酸的催化作用下,2-苯基-3-羟基-丙烯醛与苯胺或苯胺的衍生物在甲醇溶液中进行缩合反应,得到西佛碱;在无水无氧的条件下,进行上述西佛碱与正丁基锂的反应,得到负离子配体;在无水无氧条件下,负离子配体与三氯化钒的配位反应,得到本发明的β-羟基丙烯亚胺钒烯烃聚合催化剂。在二乙基氯化铝的作用下,本发明的催化剂可催化乙烯聚合、乙烯与α-烯烃或降冰片烯的共聚合。它具有制备方便、催化活性高、热稳定性好及共聚合能力强等优点。
本发明提供了一种碳酸丙烯酯电解液及其制备方法和应用;所述碳酸丙烯酯电解液包括:锂盐8wt%~20wt%;碳酸丙烯酯20wt%~91wt%;链状碳酸酯0wt%~60wt%;添加剂0.5wt%~6wt%;所述添加剂为异硫氰酸酯类化合物。与现有技术相比,本发明提供的碳酸丙烯酯电解液以碳酸丙烯酯为主溶剂,配合其他特定含量组分,实现整体较好的相互作用,能够抑制碳酸丙烯酯嵌入石墨,从而实现以碳酸丙烯酯作为主要环状碳酸酯溶剂组分甚至单一溶剂,对提高锂离子电池的性能具有重要意义。
本发明公开了一种载波现场测试仪,其包括壳体,其中,壳体内布置有印刷电路板,壳体的正面设置有按键区,按键区上均匀布置有多个控制按键,按键区上部的壳体上设置有显示屏,壳体左侧设置有多个用于与外界交互的交互接口,壳体下方设置有R2S32接口与电源接口;壳体背面设置有用于外接载波器的连接插槽,连接插槽下方的壳体背面上设置有锂电池,锂电池与电源接口线路连接,多个控制按键、显示屏、交互接口、R2S32接口、电源接口均与印刷电路板线路连接。涵盖了通信行业里所有通信方式,具有通用性强,可以调试多种厂家的用电设备,具有丰富的通信接口丰富,方便了调试人员操作,调试不同方案时,可以热插拔,实现了一机多用。
一种碳包覆的二氧化钛纳米片阵列和石墨烯复合电极材料及其制备方法,属于锂离子电池技术领域。本发明采用溶剂热法先合成出了垂直长在石墨烯基底上的含钛有机复合物纳米片阵列,然后在氢气和氩气混合气氛下热处理获得碳包覆的二氧化钛纳米片阵列与石墨烯的复合电极材料。通过复合提高了电极的导电性和锂离子电池的倍率性能和循环性能。本发明中二氧化钛纳米片是由锐钛矿相纳米粒子组成,同时碳包覆的二氧化钛纳米片的厚度为8~10纳米。实验结果表明碳包覆的二氧化钛纳米片阵列/石墨烯复合材料具有比纯二氧化钛更优秀的倍率性能,且具有优秀的循环性能。
一种燃料电池混合动力汽车的预测性能量管理方法,属于新能源汽车电源技术领域。本发明的目的是在保持锂电池SOC处在参考值附近的同时,保证燃料电池以高效率运行,在满足上述条件的情况下使氢气消耗达到最小的燃料电池混合动力汽车的预测性能量管理方法。本发明步骤是:混合动力系统的拓扑结构;燃料电池混合动力汽车模型建立;车速预测与车辆驾驶模式识别;基于模型预测控制的燃料电池混合动力汽车在线能量管理方法设计。本发明达到了经济性、荷电状态和燃料电池效率三者之间的相对最优。设计了多目标的燃料电池混合动力汽车能量管理方法。在稳定保持锂电池SOC的前提下,大幅度提高了燃料电池效率,显著降低了氢气消耗量。
本发明属于新能源材料技术领域,具体涉及利用铁盐与有机配体在室温环境下简单的络合反应制得金属有机配合物,然后通过一步碳化来制备分级多孔的富杂原子的一维碳纳米锥。这种一维碳纳米锥材料具有多功能的能源存储应用,作为锂离子电池的负极材料,在50mA?g-1的电流密度下循环60次后能够获得758mA?h?g-1的可逆容量;当应用于电容器时,在扫速为5mV?s-1时,容量可以达到182.7F?g-1;作为钠离子电池的负极材料,在100mA?g-1的电流密度下进行400次循环,仍能有188mA?h?g-1的容量。另外,该一维碳纳米锥材料在储硫方面也展现了比较优异的潜能。由于材料合成的原材料廉价,合成过程简便,所以非常适合大规模的工业生产。
本发明涉及一种含有埃洛石添加剂的正极极片及其制备方法,属于锂离子电池材料领域。该方法是将正极活性物质、乙炔黑、粘结剂LA132、蒸馏水和埃洛石添加剂按质量比88:6:6:2:0.5‑5混合搅拌4‑10小时,真空放置0.5‑2小时,得到的混合浆体涂覆在集流体上,经过烘干处理制备含有埃洛石添加剂的正极极片。本发明利用埃洛石的一维纳米管结构特征,在制备正极极片过程中添加,能够在极片内部构造出三维贯通的管网结构,缩短电解液向电池正极极片内部扩散的路径,提高锂离子在正极内部的迁移率,降低电池的极化电阻,促进正极活性物质电化学反应的进行,从而提高电池的容量和循环稳定性。本发明阐述的制备方法简单,原料成本低,设备要求不高,具有较强的市场竞争力。
本发明属于有机/聚合物材料的合成方法,具体涉及含聚丁二烯光致变色弹性体的合成方法。本发明是利用两种方法制备含聚丁二烯的光致变色弹性体材料。一种方法是采用丁基锂为引发剂在一定的温度下聚合丁二烯,反应一定时间后加入光致变色单体,使光致变色单体聚合在聚丁二烯两端制备三嵌段的弹性体聚合物。另一种方法是利用原子转移自由基聚合方法制备含聚丁二烯的三嵌段聚合物弹性体,这一方法的优点是聚合物的分子量分散度低。通过条件控制,使产物中光致变色单体的含量在30-50%之间,以保证最终制得的嵌段聚合物具有弹性体的性质。本发明填补了目前国内外关于含聚丁二烯光致变色弹性体研究的空白,能够为光致变色材料带来新的应用前景。
中冶有色为您提供最新的吉林有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!