本发明公开一种纳米六氰钴酸钴/氮掺杂多孔碳复合材料制备方法,采用自然资源丰富的生物蛋白质为原料,强碱溶液为介质,三(2‑羟乙基)异氰尿酸酯(THEIC)为氰基提供源,以及钴盐为原料,一步高温热解前驱体混合物制备纳米Co3[Co(CN)6]2/氮掺杂多孔碳复合材料,与传统的溶液化学复合法相比,此类复合材料中两组元之间的结合力得到加强,同时提高了两组元间的电荷转移能力,另外,生物蛋白是一种富含氮元素的蛋白质,碳化后形成自掺杂的氮掺杂多孔碳材料,提高了材料在水系电解液中的润湿性,Co3[Co(CN)6]2颗粒纳米化均匀镶嵌在高比表面积的氮掺杂多孔碳上,在充放电过程中,其导电性和反应速率均得到了较大的提升。
本发明属于导电高分子材料领域,具体涉及一种具有树枝状泡孔结构的导电高分子复合材料。本发明提供一种导电高分子复合材料,其原料及其配比为:热塑性弹性体材料︰热固性树脂︰固化剂︰导电粒子=1~5重量份︰1~4重量份︰0.1~2重量份︰0.01~1重量份;所述导电高分子复合材料具有树枝状的泡孔结构。本发明所得导电高分子材料具有树枝状泡孔结构,其电学性能提高且稳定,逾渗值低。
本发明属于超疏水材料领域,具体涉及一种超疏水三维多孔聚合物基复合材料及其制备方法。本发明提供一种多孔聚合物基材料,其原料及配比为:聚合物2~5重量份,无机纳米粒子0.01~0.2重量份,溶剂10~80重量份,非溶剂1~20重量份;并且,所述多孔聚合物基复合材料具有三维的微纳米复合结构。本发明所得三维多孔聚合物基复合材料由于具有微纳米复合结构,拥有优异的超疏水特性(材料任意横截面的水接触角>150°)。
一种Fe3O4‑rGO‑Ag复合材料,该复合材料通过在载体氧化石墨烯GO上负载活性组分Fe3O4和Ag得到。同时本申请还公开了Fe3O4‑rGO‑Ag复合材料的制备方法及其应用。本发明利用还原氧化石墨烯比表面积大且官能团多的特点,负载具有更好吸附性能的贵金属银及磁性材料铁,零价汞的去除效率达到90%以上;且本发明所用的磁性复合吸附材料能够通过磁分离手段进行分离回收,高温再生后再利用,同时回收纯度很高的金属汞,不仅能够大大降低运行成本,且能获得直接的经济效益。
本发明公开了一种涂层厚度可调的类骨结构生物陶瓷复合材料,它是由原材料稀土、与CaCO3按照下述重量百分比配制而成:稀土:1~3%;:70~74%;CaCO3:23~29%。采用本发明的生物陶瓷复合材料制备的涂层厚度可达3mm。本发明的优点在于复合生物材料中增加了稀土成分,提高了HAP相结构的稳定性。使用该复合材料制备的涂层主要成分为性质稳定的羟基磷灰石、磷酸三钙、可降解的焦磷酸钙与钛酸钙,生物相容性优异,涂层与基体间为化学冶金结合,结合强度高,解决了生物陶瓷涂层在临床应用中出现剥落的问题。同时所用原料价格便宜,购买方便,易于贮存,具有良好的市场应用前景及商业价值。
本发明涉及一种氮硫共掺杂纳米碳管复合材料及其制备方法和应用,具体为一种金属有机框架(MOFs)衍生的氮硫共掺杂纳米碳管复合材料并将其应用于锌空气电池。采用原位生长的方法在碲纳米管上负载Zn,Co‑ZIF,随后通过高温热处理和硫掺杂,得到了氮硫共掺杂纳米碳管复合材料(NSCNT)。受益于一维空心管状结构和氮硫共掺杂效应,当NSCNT‑4:1集成到空气电极应用到锌空气电池时,在5 mA cm‑2充放电条件下,能够实现2000 h的超高稳定性能。该方法为长寿命的金属‑空气电池和其他能量转换技术的商业化应用提供一种新的可能。
本发明涉及一种纤维复合材料注塑模具的设计方法,包括以下步骤:步骤S1,注塑成型件的三维设计;步骤S2,注塑成型件三维实体模型的有限元分析;步骤S3,注塑成型件三维实体模型的模流分析;步骤S4,注塑模具浇口方位的确定;步骤S5,纤维复合材料注塑模具的设计与制作。在注塑成型工艺中,浇口方位的选择是至关重要的,合理地设计注塑浇口的方位,能够很大程度地提高注塑成型件的性能,尤其是对于CF/PEEK等诸多纤维复合材料而言,注塑浇口的方位直接影响到纤维的取向和分布,进而影响到注塑成型件的性能,本发明结合注塑成型件主应力方向分布规律和纤维在注塑充填过程中的取向规律,合理布置注塑浇口的方位,对注塑模具或模芯的设计具有指导意义。
本发明属于高分子材料领域,具体涉及一种微波法原位合成聚乳酸基复合材料的方法。所述的制备方法包括以下步骤:a、使用改性剂对纳米矿物材料和天然纤维进行表面改性;b、将一定重量百分比的丙交酯、改性后的纳米矿物材料和天然纤维置于茄型瓶中,并进行超声混合均匀;c、加入一定摩尔比的催化剂,并搅拌均匀;d、将均匀混合物,置于微波炉中,在一定微波功率条件下保温一定时间得到具有较高性能的聚乳酸基复合材料。本方法采用纳米矿物材料与天然纤维协同增强聚乳酸,显著提高了聚乳酸基复合材料综合性能。采用微波加热方法制备聚乳酸,具有反应时间短、节约能耗、降低生产成本等特点。本发明制备工艺简单,操作方便,易于实现工业化生产。
本发明公开了一种CeO2/TiO2纳米管复合材料的制备方法,首先通过水热法制备出TiO2纳米管前体,再加入铈盐溶液和丙三醇,进行CeO2的修饰,最后再在惰性气体的保护下进行干燥,得到CeO2/TiO2纳米管复合材料。本发明公开的技术方案,在传统的水热法基础上替换反应原料,在用浓碱与TiO2反应后,用弱酸乙酸代替盐酸进行除Na,同时通过控制碱NaOH、弱酸乙酸的浓度,以及浸泡的时间,控制制备得到的TiO2纳米管前体的形貌,并在纳米管表面形成较多结合活性位点,为后续与Ce的结合提供条件。得到的CeO2/TiO2纳米管复合材料,分散性好,结构均匀,有着优异光催化性能。
本发明涉及非织造复合材料领域,特别是指一种水平分支增强的仿生树形非织造复合材料及其制备方法。所述的非织造复合材料由自上而下的水平分支超细纤维层、粘合层以及蓬松层,其中水平分支超细纤维层为PEG/PP熔喷超细纤维层,粘合层为网状热熔胶层,蓬松层为热风非织造材料。水平分支结构的PEG/PP熔喷超细纤维层所具有的800nm以下的纳米纤维网、2000nm以上的超细纤维网与热风非织造材料的迂曲大孔隙组成三级树形网状结构,不仅可以实现获得流体在水平方向的快速扩散,还可以通过厚度方向上的结构差异调控流体的垂直速度,同时本发明所涉及到的制备方法流程短,工艺灵活性高,尤其适合小订单生产。
本发明公开了一种环保型环氧树脂基复合材料板,属于复合材料领域。该材料由下述按重量份数计的原料制备而成:环氧树脂100份,酸酐类固化剂80~85份,颜料浆8~10份,偶联剂3~5份,消泡剂0.6~1份,填料500~600份,促进剂0.5~1份。该环氧树脂基复合材料板经专业机构检测,无任何挥发性有机化合物,综合性能优良,可用于房屋墙体装修,各种桌、椅、柜家具的制作,安全、环保、健康。
本发明提供了一种MoS2/ND/g‑C3N4复合材料及制备方法,步骤如下:(1)将纳米金刚石清洗干燥;(2)将三聚氰胺、硫脲、金属氯化物、纳米金刚石和钼酸铵融入无水乙醇中,50‑80℃下加热保温10‑24h,自然冷却至室温;(3)将步骤(2)得到的混合物研磨后装入管式炉中,煅烧后自然冷却至室温;(4)将步骤(3)产物溶于水中,磁力搅拌后过滤清洗,干燥得到MoS2/ND/g‑C3N4复合材料。本发明利用MoS2取代贵金属助催化剂,构筑MoS2/ND/g‑C3N4复合材料,在无贵金属做助催化剂时具有较好的光解水制氢活性。
本发明公开了一种NH2‑UiO‑66@LS复合材料及制备方法和应用,属于去除污水中有害离子技术领域,该复合材料以预处理后的天然丝瓜络(LS)为载体,通过原位生长的方法,将NH2‑UiO‑66负载于预处理后的LS表面,相较于仅预处理后的LS吸附氟离子效率大大提升,对F‑的吸附率达到77.59%;在其它阴离子共存的条件下,该复合材料对F‑具有专一的吸附性能,且制备过程简单,原料易得,可以大规模制备并可高效回收利用。
一种纤维素纳米纤维/透明质酸凝胶复合材料的制备方法,属于复合材料领域,步骤为:在纤维素纳米纤维悬浮液中加入透明质酸钠,于35~55℃下搅拌至透明质酸钠完全溶解且分散均匀,室温下静置4~12h,即得纤维素纳米纤维/透明质酸凝胶。纤维素纳米纤维(CNFs)表面富含羟基,与透明质酸(HA)有良好的相容性,能有效增强透明质酸的刚度,纤维素纳米纤维/透明质酸凝胶复合材料的储能模量随着HA的浓度和CNFs的含量的增加而增加。在HA为3wt%,CNFs为HA的质量比为30%时,其储能模量可达到2505.1Pa,相比初始时的772.6Pa,提高了约220%,显示了CNFs良好的增强效果。
本发明提供了一种碳化硅/铜金属陶瓷高温电接触复合材料的制备方法。该方法采用溶胶凝胶方法或溶液反应方法,将铜微晶均匀包裹到碳化硅颗粒表面,然后再采用热压气氛烧结、常压气氛烧结、电磁感应加压烧结中的一种,对上述所包裹的复合材料进行烧结。本发明开创性地选用了碳化硅颗粒增强铜复合材料,保证了高温下具有良好电导率,并使得金属相和陶瓷相之间分散均匀;采用的低温烧成方式,大大简化了制备过程,降低了成本。
本发明公开了一种吸收、分解甲醛及VOVs的复合材料制备方法,包括以下步骤:(1)主剂制备:将PVC、硬脂酸锌、氯化聚乙烯、硬脂酸、环氧大豆油粕、偶氮二甲酰胺、纳米氧化锌、纳米二氧化钛、氨基脲高速搅拌,制得主剂。(2)共混物制备:将主剂、碳酸钙粉、钛白粉、碳酸氢钠高速搅拌,制得共混物。(3)泡板材制备:将共混物在挤塑机中加热发泡,挤出成复合材料。该复合材料具有较好的甲醛净化效率和甲醛净化持久性,可单独使用,也可用于制备胶黏剂改性、人造板饰面、装饰板。
本发明涉及一种磷酸镁水泥基纤维复合材料及其制备方法,其中磷酸镁水泥基纤维复合材料,由516.2~823.4重量份的重烧氧化镁、438.7~699.8重量份的磷酸二氢钾、31.0~49.4重量份的硼砂、159.2~636.6重量份的粉煤灰、15.6~26.0重量份的聚乙烯醇纤维、248.3~325.0重量份的水以及0~546.9重量份的石英砂组成。本发明的磷酸镁水泥基纤维复合材料,具有高延性、应变硬化特征和多裂缝稳态开裂破坏特征,另外,工作性能良好、早期强度高、体积稳定性优良。本发明显著改善了现有水泥基工程材料收缩性大、养护周期长、早期强度低、低温下无法凝固和硬化、与既有构筑物粘结性差等缺点,具有重要的实际应用意义。
本发明涉及非织造复合材料领域,特别是指一种用于建筑保温的非织造复合材料及其制备方法。所述非织造复合材料包括四层,自上而下依次是中空橘瓣水刺无纺布、熔喷非织造材料、热风非织造布和纺粘布。本发明选择轻质、柔软的材料,利用热熔胶,通过热熔机加热后熔融且经过一定压力的光辊,使得四层不同的材料复合在一起,既不破坏它们原有的特性,又得到了轻质柔软的保温材料。
本发明提出了一种纳米碳化钛增强2024铝基复合材料及其制备方法,属于金属基复合材料制备领域,用以解决TiC纳米颗粒与2024铝基体界面结合不紧密、纳米颗粒团聚严重和2024铝基复合材料力学强度低的技术问题,制备步骤为将TiC纳米颗粒进行清洗干燥;将2024铝合金加热熔化,除气打渣后保温得到2024铝合金浆液,随后对2024铝合金浆液进行降温处理,形成半固态浆液;加入TiC纳米颗粒并进行机械搅拌,制得半固态混合浆液;将半固态混合浆液升温,形成混合熔体,采用预热后的超声杆进行超声振动处理并进行浇筑。本发明所制备的2024铝基复合材料中TiC纳米颗粒分布均匀、晶粒尺寸更小分布更均匀,拉伸强度提升明显。
本发明公开一种低成本气凝胶复合材料及其制备方法,属于隔热保温材料技术领域,包括下述步骤:将多层热熔胶网膜进行叠加铺设,得到叠铺网膜;将气凝胶材料和溶剂组合以形成气凝胶浆料;将叠铺网膜在步骤(2)中气凝胶浆料中浸渍处理,形成待干燥的气凝胶复合材料;将待干燥的气凝胶复合材料进行第二次加热处理,得到低成本气凝胶复合材料。本发明实现了气凝胶材料制备过程中产生废弃物的再利用,降低了生产成本;并且在制备过程中不会产生多余的湿凝胶,避免了溶胶不必要的浪费。
本发明公开了一种混杂纤维人造花岗岩复合材料及其制备方法,将骨料清洗、破碎、筛分、烘干,按照骨料级配要求称重,混合均匀,将碳纤维、钢纤维、玻璃纤维按照配比要求分别称重,预处理,并与骨料混合搅匀,按照配比要求称取填料,按照配比要求称取树脂、固化剂、稀释剂,混合搅匀制成粘结剂,将填料加入粘结剂搅匀,最后加入预处理纤维和骨料的混合物,用强制搅拌机搅匀,并浇注到涂有脱模剂的模具中,模具固定在振动台上进行振动成型,室温固化,养护,成品。制得的混杂纤维人造花岗岩复合材料与不添加纤维人造花岗岩复合材料相比,材料的抗压强度提高25%~30%,与单一纤维人造花岗岩复合材料相比,抗压强度提高16%~21%。
本发明提供一种白云石复合材料的制备方法。所述白云石复合材料的制备方法包括以下步骤:S1、准备原料:(1).白云石、分散剂、氧化锆粉和水玻璃液体;S2、制作工序:(1).取300g的白云石放置到粉碎机内进行粉碎,然后通过过滤网进行过滤,最后来得到白云石粉,所述白云石粉的颗粒度为0.40‑40.15μm;(2).将上述粉碎好的白云石粉倒入到盘式搅拌磨设备中,然后按照一定的比例加入水玻璃液体和分散剂。本发明提供的白云石复合材料的制备方法具有在不影响白云石传压性能的基础上,有效增加了内衬管的保温性能,致使可以达到增加产能,降低消耗,实现节能和增效生产的优点。
本发明涉及一种聚乳酸改性镁合金医用复合材料及其制备方法,该医用复合材料由以下方法制备:1)对镁合金基体表面进行微弧氧化处理,后再进行偶联处理得硅烷偶联基体;2)向壳聚糖溶液中加入表面活性剂混合均匀得壳聚糖混合液;取聚乳酸溶于三氯甲烷中制成聚乳酸溶液;搅拌条件下将聚乳酸溶液加入壳聚糖混合液中,高速乳化得铸膜液;3)将所得铸膜液涂覆在硅烷偶联基体的表面,除去溶剂和表面活性剂形成干膜层,后在80‑90℃条件下保温即得。该复合材料具有良好的生物相容性、表面活性和机械力学性能,可通过调节聚乳酸/壳聚糖膜层的厚度来控制降解速率,植入人体后降解产物可被人体吸收或随新陈代谢排出体外,无需二次手术取出。
本发明涉及一种碳纳米角‑硅复合材料的制备方法,采用电弧放电法制备,其中,以两个石墨棒分别为阳极和阴极,其中阳极的石墨棒一侧抵靠有硅棒,且所述硅棒与所述阳极的石墨棒并排设置,所述阳极石墨棒与硅棒的横截面面积之比为1∶0.02‑1∶0.8,所述硅棒的长度小于阳极石墨棒的长度,且硅棒至阴极石墨棒的间距大于阴阳两极石墨棒之间的间距,本发明通过将硅棒与石墨阳极并列布置实现了硅棒和石墨阳极的共蒸发,同步完成碳纳米角的生长和硅的共晶包覆,简化了消耗性阳极的制作步骤,工艺简单,而且,采用本方法碳纳米角‑硅复合材料的产出率能够维持在50%以上,碳纳米角‑硅复合材料的纯度在95%以上,具有较高的产出率和产品纯度。
本发明属于卷烟减害技术领域,具体涉及一种ZIF‑Zn@多孔淀粉复合材料、其制备方法及在卷烟中的应用。本发明将多孔淀粉活化、进一步研磨成细粉,以甲醇为溶剂,将有机配体华为、金属锌盐以及活化后的多孔淀粉,恒温反应一定时间,分离出产物,即为ZIF‑Zn@多孔淀粉复合材料,在滤棒成型时,将该复合材料添加于卷烟滤棒中,制成二元复合滤棒。采用本申请所提供复合滤棒,不仅可降低主流烟气中的焦油,而且还可选择性降低卷烟烟气中有害的氢氰酸,幅度可达30.7%,从而达到选择性的降低主流烟气中的HCN释放量的目的,当将该吸附剂应用于二元复合嘴后,表现出了较好的应用前景。
一种用电煅炉连续生产硼化钛炭复合材料的方 法, 其方法是将工业纯的二氧化钛粉TiO2, 硼酸H3BO3和炭粉C按重量比1∶1.55-2.33∶0.75-0.97进行配料; 再将按比例配好的配料放入球磨机中进行混合、研磨, 待混合均匀后, 再将其倒入能加热的混捏锅中, 在混捏锅中加入20-35%的粘结剂进行混捏, 混捏为均匀的糊料, 混捏时间为20-30分钟; 然后将混捏好的糊料加工成直径为30mm、高度为20-40mm的柱状物; 将柱状物装入电煅炉的高温区进行煅烧, 高温区的温度为1750-1900℃, 在高温区煅烧30-40小时; 经电煅炉煅烧, 即可连续生产硼化钛炭复合材料。该方法简单, 生产成本低, 工艺流程短, 并有效利用了电煅炉温度分布的特点, 可连续生产硼化钛炭复合材料。
本发明涉及一种片材气凝胶复合材料生产装置及生产方法。片材气凝胶复合材料生产装置包括反应釜罐体和片材盒,反应釜罐体的顶部设有进液通道和抽气口,侧壁上设有出液通道;片材盒包括装配在一起的安装架和料盒,安装架定位放置在反应釜罐体内,料盒内用于存放凝胶纤维片材,各料盒共同围成与进液通道连通的封闭注液腔,进液通道用于将改性液体及超临界流体输送至注液腔中,各料盒与反应釜罐体之间围成与出液通道连通的出液腔;料盒用于围成注液腔的侧壁上设有与注液腔相通的注液孔,料盒的与反应釜罐体的内壁相对的侧壁上设有与出液通道连通的出液孔。片材气凝胶复合材料生产方法采用上述生产装置进行,本发明能节约成本、减少污染、保证成品率。
本发明属于材料技术领域,涉及一种空心玻璃微珠‑气凝胶复合材料及其制备方法,所述复合材料制备方法包括以下步骤:将空心玻璃微珠采用弱碱性溶液预处理杂质;将粉煤灰与氢氧化钠混合均匀,然后置于马弗炉中煅烧,接着冷却至常温,得到碱熔混合物,并溶解于稀盐酸中,最后使用氨水调节溶液至中性,过滤,得到硅铝溶液;在硅铝溶液中加入表面改性剂,静置交联反应后,再加入预处理所得空心玻璃微珠,边搅拌边加入,最后静置老化得到湿凝胶;采用低表面张力溶剂浸泡所得湿凝胶,最后烘干,即得。本发明所得空心玻璃微珠‑气凝胶复合材料表面皱皱巴巴,类似石榴状,结构稳定,质轻,保温性能优异,而且生产成本低,可连续规模化生产。
本发明公开了一种多肽纳米金复合材料及抗体青霉素受体修饰的玻碳电极,及利用该电极检测β‑内酰胺类抗生素的方法,属食品检测领域。其通过以下步骤制备而成:将C16R4‑AuNPs纳米复合材料均匀地滴涂在经过预处理过的GCE电极表面,生成C16R4‑AuNPs/GCE后接着滴加青霉素抗体于电极表面,孵育之后清洗表面,冲掉未结合的抗体;然后将BSA牛血清白蛋白滴加在电极表面,孵育;然后再将青霉素受体滴加在电极表面,孵育,获得多肽纳米金复合材料及抗体青霉素受体修饰的玻碳电极。该电极对β‑内酰胺类抗生素具有较好的检出限和较宽的线性范围,明显提高了β‑内酰胺类抗生素的检测灵敏度,同时具有良好的抗干扰能力与选择性。
中冶有色为您提供最新的河南郑州有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!