本发明提供了一种用于锂离子电池的钛酸锂材料的制备方法及得到的钛酸锂材料,包括下列步骤:1)将有机钛源、部分有机溶剂、水混合形成含钛溶液,40-80°下水解反应;将锂盐与另一部分有机溶剂混合形成含锂溶液;将含锂溶液与发生水解反应后的含钛溶液接触反应,生成钛酸锂前躯体;Li/Ti摩尔比为0.8-0.84,2)将步骤1)得到的钛酸锂前躯体在含有氢气的惰性气氛下进行第一次煅烧,所述惰性气氛中煅烧5-60min,氢气的体积百分比为1-10%;第一次煅烧后,氢气气氛下进行第二次煅烧6-24h,第二次煅烧温度比第一次煅烧温度高至少400度。得到的钛酸锂材料同时具备优异的高倍率放电性能及循环性能。
本发明实施例提供一种锂负极预处理保护剂,所述锂负极预处理保护剂包括如式(1)所示的含有磺酰氟结构的化合物,
本发明公开了一种锂离子电池的补锂正极片和锂离子电池,所述锂离子电池的补锂正极片包括:集流体;正极活性物质层,所述正极活性物质层设于所述集流体的表面;补锂层,所述补锂层设于所述集流体的表面且与所述正极活性物质层间隔设置。根据本发明的锂离子电池的补锂正极片,不仅能够实现负极补锂、提升能量密度,而且能够避免补锂后电池阻抗增加,保证电池容量及倍率性能和循环性能。
本发明公开了一种锂金属电池锂负极的表面修饰改性方法及锂金属电池。该改性方法包括如下步骤:在干燥的保护气体气氛中,将金属锂负极浸渍在含氟离子液体中,或者将含氟离子液体涂抹在金属锂负极的表面,经氟化作用后,取出,在金属锂负极的表面形成一层富含氟化锂的保护层,得到氟化锂包覆的金属锂负极。本发明经过表面氟化作用得到的氟化锂保护层十分均匀且密集,能够减少金属锂与电解液的消耗,抑制锂枝晶的形成,使金属锂负极具有放电比容量更高、循环寿命更长和安全性能更佳等优点,实现了锂金属电池在长循环过程中的稳定与高效,能够达到高能量高功率动力电池的使用要求,有利于推进锂金属电池的产业化进程,具有广阔的应用前景。
公开了一种制备高纯度氯化锂、高纯度甲酸锂及高纯度碳酸锂的方法,制备高纯度氯化锂的方法包括:S1将粗制氯化锂和有机溶剂混合,加热至沸腾并脱除回流液中的水分后,将有机溶剂回流,直到检测到回流液和混合液中的含水量均≤0.5wt%,停止加热并冷却至室温,得到悬浊液;S2在搅拌下,往悬浊液中通入氨气,并维持搅拌一段时间,使悬浮在有机溶剂中的氯化锂全部溶解,过滤不溶物杂质,得到过滤液;S3过滤液中加入纯水,搅拌均匀后,滴加精制除杂预配液,经过充分搅拌后过滤,再往滤液中加入草酸、草酸盐或草酸酯中的至少一种,搅拌后,将温度降至‑5℃以下保冷滤除溶液中的不溶物,得到精制氯化锂的有机溶液,其中氯化锂的纯度(干基)≥99.9wt%。
本发明涉及一种稀土氧化物包覆的钛酸锂负极材料,其是由钛酸锂以及稀土氧化物制备而成,稀土氧化物均匀地包覆在钛酸锂表面。利用本发明的稀土氧化物包覆钛酸锂负极材料的制备方法可制备出粒径分布均匀的稀土氧化物包覆的钛酸锂电极材料,抑制了钛酸锂负极与电解液反应,从而阻止电解液有机溶剂分解,有效解决了钛酸锂电池的胀气问题,钛酸锂电池的循环性和倍率性得到明显的提高。
本发明属于锂离子电池领域,公开了一种锂离子电池锂盐或正极材料的制备方法,包括如下步骤:步骤1:将粉末状的含锂的电解铝废渣、含可溶性钙盐的溶液、粉末状且过量的氧化钙或氢氧化钙混合,以使反应体系的pH值在反应过程中持续稳定在9~11;搅拌反应,过滤得到沉淀和滤液;步骤2:将滤液和可溶性碳酸盐或可溶性磷酸盐反应,得到碳酸锂或磷酸锂沉淀以及母液;步骤3:将碳酸锂或磷酸锂沉淀洗涤后作为锂离子电池的电解液中锂盐或正极材料的原材料制备得到锂盐或正极材料。该方法的优势为:工艺流程短、碳酸锂或磷酸锂纯度高、无腐蚀性气体产生、收率高。同时,本发明还公开了一种锂离子电池。
本发明适用于锂电补锂技术领域,提供了锂电池负极集流体及其制造方法和锂电池负极、锂电池。锂电池集负极流体包括集流导电层和锂带,集流导电层沿第一方向间隔设置有多个凹槽,锂带设置于凹槽中,凹槽的尺寸与集流导电层的尺寸满足:1≤(d‑h)/2*y/(x+y)≤2。锂电池负极、锂电池具有上述锂电池集流体。制造方法包括以下步骤:制备锂带和具有凹槽的集流导电层,凹槽的尺寸与集流导电层的尺寸满足:1≤(d‑h)/2*y/(x+y)≤2。本发明充分利用凹槽的空间将补锂剂添加其中从而实现集流体补锂,且锂带可以较好地参与形成固体电解质界面膜,加强了集流导电层和负极材料之间可以保持有效粘结,补锂效果好,电池快充、倍率特性以及低温性能明显改善,电池的可靠性提升。
本发明涉及锂电池技术领域,公开了一种复合型锂电池正极材料及其制备方法和锂电池正极、锂电池,所述复合型锂电池正极材料的制备方法,包括以下步骤:(1)将金属阳离子与配体反应生成金属络合物,再将金属络合物与凝胶因子在溶剂中混合均匀,陈化,得到复合凝胶;(2)将复合凝胶在惰性气体中煅烧,得到煅烧产物;(3)将锂源、磷铁源与煅烧产物在含水条件下进行水热反应,得到复合型锂电池正极材料;其中,所述金属阳离子为Fe2+、Fe3+、Co2+、Ni2+、Mn2+、Cu2+、Zn2+、Mo2+中的至少一种;本发明中的复合型锂电池正极材料中含有多孔结构的复合骨架,能够有效改善电极材料在充放电过程产生的体积膨胀,同时改善电池的库伦效率和循环稳定性。
本发明公开了一种钛酸锂与镍钴锰酸锂体系锂离子电池,其正极材料由镍钴锰酸锂85~95%、水性粘合剂1~10%、导电剂3~10%组成,其负极材料由钛酸锂85~95%、水性粘合剂1~10%、导电剂2~10%组成;其中,百分数均为质量百分数。本发明涉及的正负极浆料制作均使用纯水作溶剂,并在后续工艺过程中严格地祛除水分。本发明成本低廉,加工性能优良,操作方便,涉及的电池性能安全可靠,循环寿命长,较适合于混合电动汽车、快速充电增程式纯电动公交系统、大型储能系统、家庭储能电站、高性能要求的军品等领域。
本发明公开了一种带夹层锂电池隔膜、锂电池及锂电池隔膜制造方法,锂电池隔膜包括上层隔膜、下层隔膜及陶瓷浆料层;陶瓷浆料层两面分别贴合上层隔膜及下层隔膜。制造方法包括如下步骤:在上层隔膜或下层隔膜的其中一面涂刷陶瓷浆料层;在陶瓷浆料层上对应贴合下层隔膜或上层隔膜;将贴合有上层隔膜及下层隔膜的陶瓷浆料层烘干。本发明在陶瓷浆料层两面分别贴合上层隔膜及下层隔膜,使隔膜厚度增加,陶瓷浆料层被夹在内层,大大增加隔膜的安全性,大幅度降低锂电池制造过程和使用过程中产生的短路现象,改善特别是动力型锂电池的自放电现象。
本发明公开了一种锂离子电池正极补锂添加剂及其制备方法和锂离子电池,要解决的问题是提高Li2NiO2纯度,降低成本。本发明的锂离子电池正极补锂添加剂,Li2NiO2纯度>95%,残碱总量<3%,首次充电克容量为420~465mAh/g,不可逆容量为260~340mAh/g。本发明的制备方法,包括以下步骤:复合锂盐的制备,复合锂盐与镍源混合,烧结,破碎,得到锂离子电池正极补锂添加剂。本发明的锂离子电池,在正极的正极活性材料中添加有本发明的锂离子电池正极补锂添加剂。本发明与现有技术相比,锂原料采用复合锂盐,包含混合、烧结和破碎,得到的Li2NiO2纯度>95%,残碱总量<3%,首次充电克容量为420~465mAh/g,不可逆容量为260~340mAh/g,制备方法简单,容易控制,成本低,环保,有利于工业化生产。
本发明公开了一种复合铁锂材料,包括作为主体材料的磷酸铁锂以及掺杂在所述主体材料中的掺杂材料。这种复合铁锂材料包括掺杂材料以及作为主体材料的磷酸铁锂,并且掺杂材料的充放电特性满足在10%到95%的荷电状态变化区间内,掺杂材料的单位电压差与单位荷电状态差的比值较磷酸铁锂大,并且掺杂材料的充放电特性满足在95%到100%的荷电状态变化区间内,掺杂材料的单位电压差与单位荷电状态差的比值较磷酸铁锂小。通过掺杂这种掺杂材料,使得复合铁锂材料的充电特性曲线趋于平稳,相对于纯的磷酸铁锂材料,这种复合铁锂材料可以通过电位变化来判断荷电状态。本发明还提供一种采用该复合铁锂材料的锂离子电池。
本申请提供一种基于锂浓度‑应力耦合模型计算锂离子电池活性物质颗粒锂浓度的算法。这一算法包括四个步骤,依次为取定计算所需的锂浓度‑应力耦合模型参数、计算锂离子电池活性物质颗粒表面锂通量、计算锂离子电池活性物质颗粒中心锂浓度、计算锂离子电池活性物质颗粒非中心锂浓度。利用这一算法,能够高速、精确地计算锂离子电池活性物质颗粒锂浓度,从而使之能够用于锂离子电池仿真与电子设备、电动汽车、储能电站中锂离子电池荷电状态估计。
本申请公开了一种锂例子电池正极材料及其制备方法、锂离子电池的正极和锂离子电池,其中,锂离子电池正极材料含有尖晶石相结构,尖晶石相结构含有孪晶晶界。本申请的锂离子电池正极材料,通过在尖晶石相结构中引入一定量的孪晶晶界,孪晶晶界的存在显著提高了锂离子的迁移能力,进一步提升了尖晶石相锰酸锂材料组装的锂离子电池的倍率性能。
本发明涉及锂电池领域,具体涉及一种锂电池正极片及其制备方法和全固态锂电池以及预固态锂电池。本发明涉及一种锂电池正极片,该锂电池正极片含有正极活性材料、硫化物固体电解质和添加剂,所述正极活性材料包括第一含锂化合物,所述添加剂含有第二含锂化合物和Li2Sx,其中,2≦x≦7。还涉及一种制备锂电池正极片的方法和全固态锂电池以及预固态锂电池。本发明制得的全固态锂电池或预固态锂电池具有较高的库伦效率,具有较高的电化学性能。
本发明公开了一种钛酸锂材料的制备方法、钛酸锂负极极片及锂离子电池,所述制备方法包括以下步骤:(1)将锂源和钛源按照锂与钛摩尔比为0.82~0.89的比例,加入研磨装置中,以去离子水或有机溶剂作为分散介质,研磨,得到A;(2)将A经过干燥得到B;(3)将B煅烧,冷却至室温后,得到C;(4)将C研磨,到得D;(5)将D加入银氨溶液中,分散,再加入葡萄糖溶液,进行银镜反应;及(6)将步骤(5)制得的混合溶液过滤后进行干燥,再在炉中于350~450℃热处理2~4h,冷却至室温,得到具有Ag包覆的钛酸锂材料。本发明的钛酸锂材料的制备方法,使得钛酸锂材料的电导率得到提高,倍率性能和循环稳定性得到显著改善。
本发明公开一种改善锂电池磷酸铁锂正极材料低温性能的方法和锂电池,该方法是向锂电池磷酸铁锂正极材料的配方中加入钴酸锂。本发明利用钴酸锂低温放电性能好的特点,改善了现有磷酸铁锂电池低温性能差的问题,无需改变原有的生产工艺,即可得到低温性能优良的磷酸铁锂电池。本发明还通过对钴酸锂的添加量进行优化筛选,不但低温放电容量保持率上升,放电时间长,取得比较好的效果。
本发明涉及电池领域,具体地,涉及一种锂离子电池隔膜、锂离子电池电极和锂离子电池。该锂离子电池隔膜包括至少两个绝缘层及位于相邻两个绝缘层之间的抑锂层,所述抑锂层含有可嵌锂物质、第一粘结剂及导电剂。该锂离子电池电极,包括集流体及位于集流体上的活性材料层,所述活性材料层表面还设有绝缘层及位于绝缘层表面的抑锂层,所述抑锂层含有可嵌锂物质、第一粘结剂及导电剂。本发明提供的锂离子电池具有很好的安全性和耐过充性。
本发明涉及电化学技术领域,具体提供一种三维复合金属锂负极及制备方法和锂金属电池、锂硫电池。所述三维复合金属锂负极包括具有三维多孔结构的导电体和金属锂;所述金属锂嵌入填充于所述导电体的三维多孔结构中。本发明的三维复合金属锂负极组装成电池后可以抑制电池循环过程中锂枝晶的产生和引起体积的变化,有利于金属锂负极的商业化应用。
本发明涉及一种用于锂离子电池隔膜的涂料,该涂料包括核/壳结构的陶瓷/聚合物复合粒子,其中陶瓷粒子为核,熔融温度为100‑200℃的低熔点聚合物为壳包覆陶瓷粒子。本发明还涉及用该涂料涂覆的锂离子电池隔膜和用该隔膜制作的锂离子电池。采用该涂料涂覆在基膜上制成涂层的锂离子电池隔膜后,陶瓷粒子可以为涂层和隔膜提供耐高温性能,低熔点聚合物材料可以在电池发生过热时熔融,关闭隔膜的孔隙,实现热关闭性能。而且,所采用的聚合物为憎水型聚合物材料,因此包覆的涂层粒子水分含量极低。本发明的锂离子电池隔膜的涂料可提升锂离子电池隔膜在电池体系的电性能,提高电池的安全性能和循环性能。
本发明公开了含锰钴镍的锂复合氧化物 Lia (NibCocMnd)M1-b-c-dO2(式中 M为至少一种选自Cr,Zn及Sn的金属原子,a=0.97-1.07, 0<b<1,0<c<1,0<d<1,0.9≤b+c+d<1=。本发明还公 开了含锰钴镍的锂复合氧化物的制备方法,包括以下步骤:(a) 在可控气氛环境下,将M盐(为至少一种选自Al,Mg,Cr, Zn,Ti及Sn金属的金属盐)及锰、镍、钴盐的混合水溶液加至 碱液中,共沉淀生成Ni-Co-Mn-M复合氢氧化物;(b)洗涤、 干燥(a)步骤制得的复合氢氧化物后与氢氧化锂混磨,并于240 -550℃下热处理此混合物;以及(c)于650-850℃下热处 理步骤(b)中所得的产物。按此法制备的锂复合氧化物粒度较均 匀,密度较大,结构稳定性及加工行为好,电化学充放电及循 环性能优异。本发明还公开了含锰钴镍的锂复合氧化物作为锂 离子二次电池的正极材料及在锂离子二次电池中的应用。
本发明提供了一种锂离子电池负极极片补锂装置。所述锂离子电池负极极片补锂装置包括惰性气氛室,所述惰性气氛室内隔设有冷却室,以及用于容纳金属液化池的容纳室,所述容纳室内设有所述金属液化池,所述金属液化池的内腔为用于收容熔融金属锂的收容腔,所述收容腔的上方设有微凹辊和刮刀,所述刮刀设于所述微凹辊的侧部,所述刮刀与所述微凹辊之间的角度为80至100度,所述微凹辊的两侧设有两个转动辊。本发明的锂离子电池负极极片补锂装置,补锂装置结构简单,可以解决熔融锂与基材和微凹辊的表面润湿性不好,导致熔融锂在涂覆辊或者基材上进行团聚,造成补锂涂覆不均匀,影响锂离子电池性能的问题,补锂的一致好,产品优率和生产效率大幅提高。
本发明公开了一种镍钴锰酸锂与钛酸锂体系锂离子电池,其正极材料由镍钴锰酸锂、粘合剂3、导电剂组成;其负极材料由钛酸锂、粘合剂、导电剂组成;其电解液含有电解质和溶剂,其中电解质为LiPF6或由LiPF6和双草酸硼酸锂组成。本发明的镍钴锰酸锂与钛酸锂体系锂离子电池,其电解液使用温度范围宽,化学稳定性好,适配于镍钴锰酸锂与钛酸锂体系的锂离子电池。本发明的锂离子电池,安全性高,循环寿命长。
本发明涉及锂离子电池、锂离子电池负极片及锂离子电池制备方法;一种锂离子电池负极片,包括负极集流体和涂覆于所述负极集流体上的负极材料;所述负极材料包括负极活性物质、导电剂、高分子粘结剂;所述负极活性物质包括经过碳包覆处理的FePO4。该锂离子电池负极片的负极材料通过选择经过碳包覆处理的FePO4作为负极活性物质,从而使得制得的锂离子电池具有较高的安全性能和能量密度以及较长的使用寿命。
本发明属于锂离子电池技术领域,涉及一种复合金属锂负极及包括该复合金属锂负极的锂离子电池。相对于现有技术,本发明具有以下有益效果:本发明的复合金属锂负极中通过润湿稳定结构的调控,使得金属锂与集流体之间有着良好的润湿性和稳定性。本发明的复合金属锂负极的润湿稳定结构中的卤化锂是稳定剂(如润湿稳定结构中的稳定剂)和金属锂原位生成的,该原位生成后的润湿稳定结构中的卤化锂使得金属锂在循环的过程中能够均匀沉积,提供快速离子扩散路径,抑制了锂枝晶的形成和生长。
一种锂离子电池正极材料磷酸铁锂-磷酸钒锂的制备方法。是将硫酸亚铁溶液和偏钒酸铵溶液加入搅拌反应釜中反应0.5~8h,再将足量的双氧水加入溶液中反应0.2~0.5h,陈化2~4h,经过滤、洗涤、干燥后得到高活性的FeVO4·xH2O粉末;将FeVO4·xH2O粉末经过500℃热处理后得到纯相FeVO4;再将纯相FeVO4、锂源化合物、磷源化合物、复合碳源及复合金属化合物为原料,将铁、钒、磷、锂、碳元素及复合金属元素摩尔比配比为1∶1∶2.5∶2.5∶(0.1~10)∶(0.01~1),然后以水为介质进行机械活化0.5h~10h,采用喷雾干燥方式得到含复合碳源和复合金属元素的磷酸铁锂-磷酸钒锂复合材料前驱体,再在一定的气氛保护下于600~900℃焙烧4~20h,得到性能优异的磷酸铁锂-磷酸钒锂复合正极材料。
本发明公开了一种锰酸锂与钛酸锂体系锂离子电池,其正极材料由锰酸锂、粘合剂3、导电剂组成;其负极材料由钛酸锂、粘合剂、导电剂组成;其电解液含有电解质和溶剂,其中电解质为LiPF6或由LiPF6和双草酸硼酸锂组成。本发明的锰酸锂与钛酸锂体系锂离子电池,其电解液使用温度范围宽,化学稳定性好,适配于锰酸锂与钛酸锂体系的锂离子电池。本发明的锂离子电池,安全性高,循环寿命长。
本发明公开了一种锂离子电池富锂工艺及使用该工艺制备的锂离子电池,所述富锂工艺的步骤为:在低于EC熔点的温度下,将锂粉与EC粉末在干粉状态下预混均匀,然后再升温到高于EC熔点的温度,以使EC粉末溶剂化,从而得到锂粉均匀分散在EC溶剂中的锂粉浆料;将制得的锂粉浆料涂覆在锂离子电池正极片、负极片、隔离膜中的至少一种上,然后冷却至低于EC熔点的温度,得到表层为富锂层的正极片、负极片和/或隔离膜。与现有技术相比,本发明的富锂工艺不仅具有制备方法简单、分散效果均匀、分散过程对锂粉表层保护膜无破坏的优点,而且富锂层涂覆后无需烘干,有效地避免了锂粉在高温烘烤过程中的氧化和漂浮到空气中。
本发明提供了一种锂离子电池正极材料、锂离子电池正极片及其制备方法和锂离子电池,涉及电极材料技术领域,所述锂离子电池正极材料包括正极活性物质、正极导电剂、正极粘合剂和含氮组合物,所述含氮组合物包括巴比土酸类化合物和马来亚酰胺类化合物,以缓解现有的锂离子电池在使用过程中,存在起火爆炸等安全隐患的技术问题,通过正极活性物质、正极导电剂、正极粘合剂和含氮组合物相互协同,使的含氮组合物在高温下发生交联反应,生成膜状的含氮高聚物,包覆于正极活性物质表面,阻断锂离子的传输,从而避免锂离子电池内部温度继续升高,提高锂离子电池的安全性能。
中冶有色为您提供最新的广东有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!