本发明属于锂金属电池领域,具体公开了一种氮氧共掺杂碳包覆金属锂阳极活性材料,其特征在于,包括碳空心球以及装填在碳空心球内部腔室的金属锂单质;所述的碳空心球的球壁材料为氮氧共掺杂的石墨化碳,且该球壁具有介孔结构。本发明还公开了包含所述氮氧共掺杂碳包覆金属锂阳极活性材料的锂金属阳极以及锂金属电池。本发明所述的氮氧共掺杂碳空心球可以有效的降低金属锂成核和沉积过程中过电位,提供均匀的成核和沉积位点,使金属锂在集流体中稳定均匀的生长,实现锂金属阳极在长循环过程中均匀的沉积和溶解。此外,稳定有序的碳骨架可以极大的减小循环过程中的体积膨胀,大幅度提高锂金属电池的循环寿命和安全性能。
本发明提供了一种利用锂离子电池正极活性废料制备电池级氢氧化锂的方法,包括以下步骤:首先采用氧化酸浸法处理锂离子电池正极活性废料,得到酸性浸出液;然后采用两步萃取的方式以及调节溶液的pH值分离锰、钴与镍,实现有价金属的综合回收,同时深度脱除Fe、Ni、Ca、Mg、Cu、Al等元素的杂质粒子,该过程中有效避免了锂的损失;再采用强酸性阳离子交换树脂对萃余液进行深度除杂处理,得到净化富锂溶液;经双极膜电渗析法处理净化富锂溶液后,得到氢氧化锂溶液和酸性溶液;最后对氢氧化锂溶液进行蒸发浓缩,得到电池级氢氧化锂产品。采用该方法,可获得直接用于三元正极材料制备的电池级氢氧化锂产品,实现锂的增值化处理。
一种高性能锂离子电池正极材料磷酸铁锂的制备方法,将自制包含掺杂元素的磷酸二氢锂、草酸亚铁或乙酸亚铁、导电剂或导电剂的前驱体按照一定的比例混合均匀,然后将混合物放入惰性气氛保护的微波反应炉中煅烧和热处理,最后冷却至室温,便制得锂离子电池正极材料磷酸铁锂。本发明方法避免了氨气、一氧化碳等污染性气体产生,有利环境保护,工艺简单易行,适宜于工业化生产,而且所制备的磷酸铁锂电化学性能优良。
一种从硫酸锂钾与氯化钠混合物中浮选硫酸锂钾的方法,包括以下步骤:(1)将硫酸锂钾和NaCl的混盐进行磨矿;(2)将步骤(1)所得矿浆送入浮选机,浮选工艺流程为一次粗选一次扫选或者一次粗选两次扫选;(3)将步骤(2)所得硫酸锂钾精矿过滤,烘干,得硫酸锂钾粗产品。采用本发明,从硫酸锂钾与氯化钠混合物中浮选硫酸锂钾,对不同品位的硫酸锂钾资源具有很强的适应性,且工艺简单,便于操作,成本低,能耗低,所用浮选药剂无毒无污染,所得硫酸锂钾产品质量好;锂资源回收率高,经济效益好。本发明采用浮选法先将硫酸锂钾与氯化钠等杂质分离,再通过化工处理法生产硫酸钾和碳酸锂,将大大提高产品的质量和收率。
一种改性高镍类单晶镍钴锰酸锂正极材料及其制备方法,包括基材以及包裹于基材表面的含锂包覆层,所述基材的化学式为LinNixCoyMn1‑x‑yMzO2,其中0.95≤n≤1.1,0.8≤x≤1,0.1≤y≤1,0.3≤z≤0.7,M为Ti、Mg、Al或Zr元素中的一种或多种;含锂包覆层包括Li3NbO4,LiNbO3,Li2ZrO3或LiAlO2中的一种或多种;含锂包覆层与基材中镍钴锰酸锂化合物的质量比为0.2%~1.0%。本发明在高镍类单晶基体上引入微量的掺杂元素M,通过一烧欠锂,二烧补锂结合包覆手段修复相结构的工艺,并调整掺杂元素M的元素掺杂量,使制备得到的正极材料锂镍混排值控制在1.7%至3.0%范围内,能提高高镍类单晶镍钴锰酸锂正极材料的首次充/放容量和倍率性能,还能明显改善高温循环及高温DCR增长性能。
一种采用氯化焙烧法从锂云母矿中提取锂制备碳酸锂的方法和设备,先将锂云母矿、氯化钙、氢氧化钠与复合粘结剂混合,造球,在“回”形轨道式焙烧炉中进行氯化焙烧,用含碳酸钠、碳酸钾的溶液浸出上述烟尘,钾、钠、铷、铯进入溶液,锂转化为碳酸锂,过滤后得到碳酸锂固体,过滤母液循环用于浸出烟尘,直至碱金属盐接近饱和后,利用焙烧炉气余热间接加热过滤母液蒸发部分水分,通入CO2进行碳酸化,冷却结晶析出碳酸钾、碳酸钠混合盐,将该混合盐一部分返回作辅料与锂云母混合焙烧循环利用,一部分用作溶出时所需碳酸盐试剂,其余部分作为碳酸钾、碳酸钠副产品。本发明锂回收率高,物料综合利用好,设备产能大,生产效率高,过程用水量小,废水排放少。
本发明公开了一种硅酸钛锂锂离子电池负极材料的制备方法,具体包括以下步骤:1)将锂盐、钛源、硅源溶于有机溶剂中并混合均匀,制成混合溶液;2)调节混合溶液的pH值至1.5-6.5;3)将水蒸汽经载流气体载流通入步骤2)后的混合溶液中进行水解反应得到共沉淀物,然后过滤、水洗、烘干,得到前驱体;4)将前驱体在惰性保护气氛中先在450~700℃的温度下预烧3~5h,再在750~950℃的温度下焙烧,得到所述的硅酸钛锂锂离子电池负极材料。本发明的制备方法制备的负极材料具有较为理想的形态和粒度分布,以及良好的电化学性能;本发明的制备方法流程简单、可操作性强、安全性高,便于实现产业化。
本发明属于废旧锂离子电池的综合回收利用领域,具体公开了一种以废旧锂离子电池为原料制备锂吸附剂的方法。废旧锂离子电池经拆分及有机溶剂浸泡,得到正极粉体材料,通过还原浸出得浸出液,利用萃取及化学转化、分离提纯浸出液中的锰和锂,使其分别以硫酸锰和氢氧化锂的形式存在,并用提纯后的硫酸锰与氢氧化锂通过水热合成法制备锂吸附剂。本发明能够使废旧锂离子电池直接变为新材料锂吸附剂,有效减缓锂离子电池对环境的污染,整个制备过程绿色低能,成本低,锰锂元素的回收率高,有效避免锰钴深度分离所带来的流程长、效率低的问题,制备得到的锂吸附剂吸附性能优异。
本发明公开了一种磷酸铁锂‑钛酸锂电池生命周期的预测方法。该预测方法先对某种型号规格的磷酸铁锂‑钛酸锂电池,进行指定次数的循环后,进行电性能检测;然后拆解,获得正极材料、负极材料、隔膜和电解液中的一种或多种,并进行材料学检测和/或分析化学检测,建立关于磷酸铁锂‑钛酸锂电池电性能指标、材料学参数和/或分析化学参数与循环次数之间对应关系的标准数据库;再取待测磷酸铁锂‑钛酸锂电池同样进行拆解并进行相关检测,进行比对,预估电池的剩余的循环次数。本发明综合电池的电性能测试、电池组分的材料学、分析化学检测手段,提出一套相对准确的评价磷酸铁锂‑钛酸锂电池性能衰减程度并预测剩余使用寿命的方法,有效减小预测误差。
本发明公开了一种锂离子电池负极极片及其制备方法、锂离子电池;该锂离子电池负极极片包括含有负极活性材料的电极片,以及与电极片含有负极活性材料的一面结合的薄膜态固体电解质层。锂离子电池负极极片的制备方法,包括以下步骤:采用离子溅射、真空蒸镀、化学生长或物理涂覆的方法在电极片含有负极活性材料的一面生成薄膜态固体电解质层,得到锂离子电池负极极片。锂离子电池包括上述的锂离子电池负极极片、电解液和锂离子电池正极极片。该锂离子电池负极极片结构稳定且寿命长、电化学窗口宽且稳定,包含该锂离子电池负极极片的锂离子电池具有存储及循环寿命长、基本电化学性能不受影响等优点。
本发明公开了一种全氟磺酰双腈胺锂聚合物电解质的制备方法,包括:将丙二腈与氢化锂在特定混合溶剂A存在下于适当温度和惰性气氛下混合反应不少于5h,得到丙二腈锂溶液;将纯化后的丙二腈锂溶液与带乙氧基侧链的全氟磺酰氟树脂发生相似转变反应,丙二腈锂保持过量,反应后经后续处理,即得到侧链含双腈胺锂基团的全氟磺酰双腈胺锂聚合物电解质。本发明的锂硫二次电池,包含锂负极、正极极片、电解质膜、有机电解液;电解质膜用到的电解质为全氟磺酰双腈胺锂聚合物电解质;正极极片主要由集流体以及硫正极活性材料等组成;有机电解液包含锂盐和非水溶剂。本发明的锂硫二次电池产品充放电过程活性物质克容量较高,活性物质溶失少,循环寿命长。
从锂云母矿中提取锂制备碳酸锂的方法和设备,先按质量比为锂云母矿石∶CaO∶Na2CO3与K2CO3中的一种或两种=1∶0.2~0.4∶0.1~0.3混合,在“回”形焙烧炉中焙烧;再将熟料粉碎,加入消石灰,按液固比为2~4∶1,加入沉锂母液、水或残渣洗液,浸出,过滤,洗涤;然后往滤液中加碳酸钠,或碳酸钠与碳酸钾的混合盐沉锂,沉淀,过滤,干燥得到碳酸锂;最后过滤母液返回压煮溶出过程,多次循环后将焙烧炉气通入该过滤母液蒸发,通入CO2碳酸化,冷却结晶析出碳酸钾、碳酸钠混合盐。本发明克服了石灰焙烧法渣量大、能耗高的问题;避免传统压煮法预焙烧过程中HF对环境和设备的影响。
磷酸锰锂-磷酸钒锂复合材料的制备方法,包括以下步骤:(1)以MnV2O6·4H2O、LiH2PO4以及复合碳源为原料,将锰、钒、磷、锂、碳元素摩尔比控制为1∶2∶4∶4∶(0.1~10),以质量浓度50~100%的酒精为分散介质,在200~400r/min下球磨4~12h,然后喷雾干燥,得到含复合碳源的磷酸锰锂-磷酸钒锂复合材料前驱体粉末;(2)将步骤(1)所得磷酸锰锂-磷酸钒锂复合材料前驱体粉末在保护性气体下于400~800℃焙烧4~20h,得磷酸锰锂-磷酸钒锂复合正极材料。本发明操作过程简便、设备简单、易于控制;所得到的磷酸锰锂-磷酸钒锂颗粒粒径分布为0.1~6μm,反应活性高,有效地改善了材料的循环性能和倍率性能,大大提高了物料的加工性能。
本发明属于锂金属电池技术领域,具体公开了一种多孔锂金属阳极,包括多孔金属集流体,复合在所述多孔金属集流体骨架上的金属锂层,以及覆盖金属锂层表面的氧化锂层。本发明还公开了所述的多孔锂金属阳极的制备方法,将多孔金属集流体进行表面氧化,随后向表面氧化后的多孔金属集流体中填充金属锂,进行置换反应,制得所述的多孔锂金属阳极。本发明还公开所述的多孔锂金属阳极的应用以及制得的锂金属电池。本发明中,原位形成的氧化锂层的存在降低了金属锂与电解液直接接触,有效避免的界面反应的发生,同时保持多孔金属集流体高比表面积的优势。同时,氧化层良好的亲锂性,有利于稳定锂离子的传输,最终实现锂金属电池长的循环寿命。
本发明涉及废旧锂离子电池回收领域,提供了一种从废旧锂离子电池正极材料中回收锂的方法,所述方法将废旧锂离子电池正极材料与(NH4)2SO4混合进行硫酸化焙烧,破坏正极材料的层状结构使锂离子顺利脱出,再将焙烧产物进行水浸出得到富锂浸出液和过渡金属氧化物渣相。浸出液经过除杂净化后加入碳酸铵,在一定温度下以Li2CO3沉淀的形式回收锂,沉锂后液进行蒸发结晶可制备(NH4)2SO4,实现废旧锂离子电池正极材料中锂的回收和(NH4)2SO4的循环使用,同时含锂残液可在水浸出阶段循环使用。本发明回收流程短,成本低,过程清洁,所得碳酸锂纯度高达99.6wt%。
本发明公开了锂离子电池拆解活性黑粉制备三元前驱体、碳酸锂的方法,涉及锂离子电池拆解技术领域,包括以下步骤:S1、粉碎配料;S2、绝氧锻烧;S3、破碎水浸;S4、精滤、MVR浓缩;S5、酸溶浸渍;S6、洗涤活化;S7、共沉除杂;S8、除钙除氟;S9、精除氟;S10、配料沉淀。该锂离子电池拆解活性黑粉制备三元前驱体、碳酸锂的方法,在湿法处理时没有使用萃取,最终产品中油份含量极低,规避了后续前驱体对电池生产的影响,利用活性黑粉自身的铝、铜及炭粉的还原性,并按一定比例补充炭铝粉,在隔绝氧气的情况下高温焙烧,不需要控制炉内气氛,控制简单,能耗低;流程短,工艺简单易操作;流程内物料进行循环利用,减少原辅料的消耗。
一种富锂锰基层状锂电池正极材料,其分子式为Li[Li1-x-y-zNixCoyMnz]O2,其中0<x<0.5,0<y<0.5,0.1<z<0.7,0<1-x-y-z<0.5,D50在10~20μm,比表面积在1~4m2/g,12.5mA/g充放电电流密度下放电容量达200~300mAh/g,其制备方法包括:先准备锂源、镍源、钴源和锰源,然后按配比将原料混合制成混合盐溶液,再加入聚丙烯酸和柠檬酸溶液并混合均匀;然后加热形成稳定的溶胶,蒸发水分后形成凝胶,将凝胶干燥形成干凝胶;最后进行烧结得到富锂锰基层状锂电池正极材料。本发明的正极材料具有高的放电比容量,安全性好,生产成本低,性价比高。
本发明公开了一种从废旧锂离子电池中回收锂的方法,该方法为向废旧锂离子电池湿法回收系统产生的含锂萃余液中加入正磷酸盐,过滤,得到粗制磷酸锂;将粗制磷酸锂与水制浆后,加入无机酸,使磷酸锂溶解,使用萃取剂萃取磷酸,使磷酸与锂盐溶液分离,得到锂盐溶液和负载磷酸的有机相;负载磷酸有机相使用碱溶液进行反萃,得到正磷酸盐溶液,回收用于制取粗制磷酸锂;同时向锂溶液加入碱试剂除杂后得到纯锂盐溶液;纯锂盐溶液加入碳酸盐沉淀剂,过滤烘干后得碳酸锂产品或直接蒸发得锂盐产品。本发明的方法提高了资源的综合回收率,且工艺简单,设备要求低,能耗成本低廉,得到的产品纯度高,产品价值高,具有极大地经济效益。
本发明属于电池领域,具体地说,涉及一种锂电池负极材料。所述锂电池负极材料包括93~98wt%石墨,2~7wt%的单晶硅和氧化亚硅,所述负极材料在石墨的主体上形成有多孔结构,单晶硅和氧化硅分布于多孔结构内部或周边部位。本发明还涉及所述锂电池负极材料的一种制备方法,该方法采用煤基焦粉为原料,煤基焦粉经物理处理,氧气氛围下碳化,石墨化,后处理得到所述负极材料。本发明所述的锂电池负极材料的循环性能好,嵌锂过程中体积膨胀小、材料粉化或剥离现象明显降低,具有较高的克比容量,电学性能优异,可广泛地应用于锂电池技术领域。
本发明公开了一种锂离子正极材料补锂添加剂,其包括Li5FeO4基体和位于Li5FeO4基体表面的包覆层;该包覆层包括位于Li5FeO4基体表面的第一包覆层碳层和位于第一层包覆层表面的第二包覆层过渡金属氧化物层。本发明还公开了该补锂添加剂的制备方法:先制备碳层包覆包覆氧化铁,再通过湿法混合,制备表面碳包覆的Li5FeO4,最后与过渡金属离子盐溶液、氢氧化铵溶液混合,高温烧结,得到补锂添加剂。本发明的双层包覆Li5FeO4补锂添加剂,Li5FeO4基体为微米或者纳米级颗粒,其颗粒均匀可控,缩短了电子和离子的迁移路径,可以实现Li5FeO4材料补锂性能的发挥,延长锂离子电池的使用寿命。
一种从高钙含锂的原料中提锂的方法,包括以下步骤:(1)沉钙:将含钙含锂原料加入反应容器中,并加入钙沉淀剂,搅拌,产生硫酸钙晶体,固液分离,得脱钙含锂母液;(2)纳滤:将步骤(1)所得脱钙含锂母液通过纳滤系统纳滤进一步脱钙并脱除其它≥2价的离子,得含锂滤液;(3)蒸发浓缩:将步骤(2)所得含锂滤液通过蒸发浓缩,得富锂浓缩液。本发明操作步骤简便,工作条件温和,能耗低,操作安全,对环境污染少;全部操作过程均遵循安全、节能、环保的条件进行。适用于从各种含钙含锂原料中提锂,生产成本低,而特别适用于从高钙含锂的原料中提锂。
一种锂钴复合氧化物锂离子正极材料及其制备方法,本发明之锂钴复合氧化物锂离子正极材料的通式为Li1+yCo1-xMxO2×zLiαAVOβ,其中-0.02≦y≦0.035,0≦x≦0.1,0.0005< z≦0.1,0≦α≦3,0.035≦(y+zα)≦0.06,0≦β≦5,α+v=2β,Av为一种或多种阳离子,v为相应阳离子的平均价态。本发明还包括所述锂钴复合氧化物锂离子正极材料的制备方法。本发明所得正极材料,4.5V时的钴溶出时间控制在60h~150h,4.5V扣式电池1C下循环50周,容量保持率为90%甚至95%以上;4.6V时的钴溶出时间控制在60h~100h,4.6V扣式电池1C下循环50周,容量保持率为85%甚至90%以上。
本发明一种锂离子电池正极材料镍钴锰酸锂的制备方法是采用镍、钴、锰的可溶盐共沉淀制备镍锰钴的复合碳酸盐,然后将该碳酸盐与氢氧化锂进行反应,在碳酸盐转化为氢氧化物的同时,锂以碳酸锂的形式沉积在原含镍钴锰的颗粒表面。通过这种方式,实现了锂和镍钴锰等元素的均匀混合,得到制备镍钴锰酸锂材料的优质前驱体。前驱体经过两次烧结,可得到性能优良的镍钴锰酸锂产品。本发明提出的工艺过程简单易控,制备的产品生产成本低、产品性能稳定可控,可以用于工业化生产。
片状复合正极材料磷酸铁锂?磷酸钒锂的制备方法,包括以下步骤:(1)将钒源、铁源、磷源、锂源、有机碳源,按钒原子、铁原子、磷原子、锂原子、碳原子摩尔比为2 : 1 : 4 : 4 : 3~5的比例溶于去离子水中,加入表面活性剂,调节pH值,搅拌;(2)转移至高压反应釜中,通入保护性气体,以200~1200rpm的速度,200~300℃的温度,反应10~30h,经洗涤、过滤、干燥后,研磨;(3)在非氧化性气氛下于600~800℃焙烧,即成。本发明合成的片状磷酸铁锂?磷酸钒锂复合正极材料具有优异的电子导电性和离子导电性,电化学性能优异,产品均一性好且稳定、成本低。
本发明属于锂离子电池材料领域,具体公开了一种补锂正极活性材料,包括正极活性材料和至少一种锂化的有机补锂剂。本发明还公开了一种包含所述的补锂正极活性材料的补锂正极材料、补锂正极以及采用所述的补锂正极装载而成的锂离子电池。本发明发现所述的补锂添加剂和正极活性材料有协同性,此外,本发明还提出了一种操作简单、制备周期短、产物活性高的制备方法。
本发明公开了一种废弃磷酸铁锂电池和废弃镍钴锰锂系电池协同回收与再生方法,该方法将废弃磷酸铁锂电池正负极粉、废弃镍钴锰锂系电池正负极粉和硫源混合进行硫化焙烧,硫化焙烧产物进行水浸,得到锂盐溶液与含铁氧化物和镍钴锰硫化物的富集渣;将含铁氧化物和镍钴锰硫化物的富集渣采用磷酸浸出,得到磷酸铁溶液和含镍钴锰硫化物的浸出渣;含镍钴锰硫化物的浸出渣通过浮选分离或湿法分离,得到镍钴锰硫化物。该方法不必对废弃电池进行分类,可以多种废弃电池统一处理,且同时实现锂、铁、磷、镍、钴、锰等有用资源的高效回收和再生获得LiOH、磷酸铁锂和镍钴锰锂产品,且工艺简单、成本低、不易造成环境污染,有利于大规模生产。
一种利用硫酸钠从中高镁锂比老卤中提取氢氧化锂的方法,通过老卤多次与硫酸钠反应,排出老卤中的镁,将锂富集于清液中,再通过冷冻析盐,碱法除镁,加入氢氧化钠,固液分离,得氢氧化锂沉淀。本发明方法工艺流程简单,设备简单,操作简便,能耗低,绿色环保,生产周期短;硫酸钠原料易得,成本低,在本发明中可回收利用;适用性广,能大幅度降低老卤中的镁锂比,通过本工艺处理后的富锂母液中锂质量百分含量达到1.5%以上,大幅度降低了提锂过程中除镁的成本;除镁率高,可除去老卤中85%以上的镁。
本发明提供一种三元正极材料锂离子电池电解液及包含该电解液的锂离子电池,涉及锂离子电池技术领域。本发明三元正极材料锂离子电池电解液由有机溶剂、非水性有机溶剂、锂盐、添加剂组成,其中,各组分占锂离子电池电解液总质量的百分比分别为:有机溶剂15%‑25%,锂盐17%‑23%,添加剂1%‑4%,余量为非水性有机溶剂。本发明使用有机溶剂、非水性有机溶剂作为溶剂体系,该溶剂体系对锂盐溶解度高,粘度低,同时配合低温添加剂的作用,实现了电解液在兼顾容量、内阻等电化学性能的同时,也使得三元正极材料电池具有优异的循环性能,低温条件下电池循环时间延长。
本发明涉及一种磷酸铁锂锂离子电池正极用浆料,包括87~95份掺杂磷酸铁锂、2~7份导电剂、3~6份粘结剂和82~127份溶剂,所述掺杂磷酸铁锂中掺杂有三元材料,其中,磷酸铁锂与三元材料的质量配比为:磷酸铁锂∶三元材料=94.5~96∶4~5.5;所述三元材料为镍钴锰酸锂,其化学通式为LiNixCoyMn1-x-yO2,0.2≤x≤0.8,0.1≤y≤0.4。采用本发明浆料制作的锂离子电池,其容量和平台电压得到提升,可充电电压得到提高,内阻和倍率性能明显改善,电子导电性能得到提高,而且具有优越的高温、安检和循环性能。
一种锂硫电池专用改性隔膜,在普通隔膜靠正极一侧的表面涂布一层添加有导电剂的科琴黑包覆金属氧化物改性涂层。该锂硫电池专用改性隔膜的制备方法依次包括将科琴黑与金属氧化物无机盐的水溶液混合,经过分散、烘干、煅烧后,制成浆料涂布在商用隔膜靠正极一侧烘干所得。本发明还公开了使用锂硫电池专用改性隔膜的锂硫电池,以金属锂为负极,将科琴黑-硫复合材料涂布在铝箔上作为正极,将双三氟甲基磺酸亚酰胺锂、硝酸锂、1,3-二氧戊环和乙二醇二甲醚的混合物作为电解液,和所述锂硫电池专用改性隔膜组装而成。本发明的改性隔膜能够抑制锂硫电池中多硫化锂的“穿梭效应”,提高锂硫电池的电化学性能、容量和循环寿命,适用于大规模生产。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!