本发明公开了一种聚合物/石墨纳米导电复合材料的制备方法。本发明将低分子助剂如增塑剂的溶液或乳液与膨胀石墨混合,并待低分子助剂溶液或乳液渗透进入膨胀石墨中后脱除溶剂或分散介质,制成膨胀石墨与低分子助剂相复合的复合膨胀石墨,然后再将复合膨胀石墨与聚合物进行熔融混合以制备得到聚合物/石墨纳米导电复合材料。本发明制备方法简单易行,可以无需使用特殊和价贵有毒的溶剂,制备的聚合物/石墨纳米导电复合材料中,石墨基本以纳米级石墨晶片片层形式分散在聚合物基体内,石墨用量低,导电性能优异,并且制备的导电复合材料成本低廉,易于推广应用。
本发明公布了一种碳纳米管阵列/聚苯胺/二氧化铈复合材料电极及其制备方法和应用,属于新能源产品领域。该复合材料电极包括导电基底、碳纳米管阵列、聚苯胺和二氧化铈,碳纳米管阵列与导电基底垂直相接形成三维导电网络骨架,聚苯胺以纳米尺度包覆碳纳米管阵列形成碳纳米管阵列-聚苯胺复合结构,二氧化铈以纳米尺度分散在碳纳米管阵列-聚苯胺复合结构中,最终形成碳纳米管阵列/聚苯胺/二氧化铈复合材料电极。本发明的复合材料电极,导电性好,结构稳定且能够自支撑,循环性能及电容性能优异;制备该复合材料电极的方法易于操作、环境友好、能耗低;使用该复合材料电极的超级电容器,电容量高,循环性能好。
本发明涉及一种木塑复合材料,特别是涉及一种耐老化木塑复合材料板材及其制备方法。本发明耐老化木塑复合材料板材,其由木粉、碳酸钙粉、塑料粒子、马来酸酐、硬脂酸盐、颜料、抗菌剂、抗氧剂、紫外线吸收剂先机械混合、再熔融混合后,通过挤出成型制作成耐老化木塑复合材料板材。本发明的耐老化木塑复合材料板材,用途极为广泛,适于建筑装饰、交通运输、家具、市政、园林等行业,不仅可再生、价格低廉,而且耐老化、耐紫外光,是一种理想的替代木材的材料,是木塑复合材料一种新型换代产品。
本发明提供一种全降解新型聚酯复合材料及其制备方法。该全降解新型聚酯复合材料包括以下重量份数的原料:热塑性改性后的聚乙烯醇10‑85份;聚乳酸15‑85份;相容剂0.5‑2.5份;聚乙二醇30‑45份。所述全降解新型聚酯复合材料的制备方法主要包括以下步骤:(1)热塑性改性聚乙烯醇的制备;(2)改性聚乙烯醇/聚乳酸聚酯复合材料的制备;(3)全降解新型聚酯复合材料的制备。本发明提供的全降解新型聚酯复合材料在陆地上可通过堆肥方式降解,在水体环境中可自行降解成对环境无害的小分子。本发明提供的制备方法有效改善了PVA/PLA聚酯复合体系的韧性,并加了快PVA/PLA聚酯复合体系的水体降解速率。
本发明公开了一种钛酸锂/碳/钼纳米颗粒复合材料的制备方法,包括以下步骤:将二氧化钛纳米颗粒、碳酸锂、羧甲基纤维素钠、柠檬酸、钼酸铋按比例混合并溶解于乙醇溶液中,超声处理使其分散均匀后,于80℃反应2 h,产物经喷雾干燥器干燥得到固体粉末,再将固体粉末在氮气气氛中于650~800℃煅烧5 h,流速为60 mL/min,升温速率为5℃/min,即得到钛酸锂/碳/钼纳米颗粒复合材料。通过该方法制备所得的钛酸锂/碳/钼纳米颗粒复合材料具有极高的首次库伦效率和优秀的倍率性能,其比压实密度高,能满足高能量密度锂离子电池的需求,本发明制备工艺简单,流程高效,原料无毒,绿色生产无污染。
本发明公开了一种具有优异低温韧性、低吸水率和高刚性的PA66复合材料及其制备方法,其在PA66纯树脂中添加特定的ABS树脂、片层状结构填料和相容剂来改善复合材料的吸水率、刚性和低温韧性,使用超低粒径的片层状结构填料尤其是使用超细滑石粉可以显著降低PA66复合材料的吸水率,提高材料干态和湿态下的刚性;在此基础上加入特定的ABS树脂和相容剂苯乙烯/N‑苯基马来酰亚胺/马来酸酐共聚物,由于改善了尼龙树脂、ABS树脂之间以及树脂与填料之间的相容性,因此可以进一步降低PA66复合材料的吸水率,同时大大改善了复合材料的低温韧性,尤其是‑40℃下的低温韧性,使该复合材料可用于特殊工况情况下,如高湿条件、低温极寒气候等,扩展了PA66的应用领域。
本发明公开了一种3D打印技术用PLA碳纤维复合材料的制备工艺,涉及3D打印复合材料技术领域,具体为一种3D打印技术用PLA碳纤维复合材料的制备工艺,包括以下步骤:a、原料准备;b、干燥混合;c、配比混合;d、材料制备。聚乳酸被认为是最有市场潜力的可生物降解聚合物,PLA在自然环境中可以完全降解,且作为环境友好型材料,PLA可以替代传统的石油基聚合物与其它的高分子材料比较,PLA具有很多突出的性能,这使PLA在3D打印领域有着广泛的使用前景。该种3D打印技术用PLA碳纤维复合材料的制备工艺,使用碳纤维对PLA进行增强改性,对PLA/碳纤维复合材料的力学性能有着明显的提升,当碳纤维的质量分数为20%时,PLA/碳纤维复合材料的力学性能最好。
本发明公开了一种螯合剂β‑ADA改性的Fe3O4复合材料及其制备方法和去除水中抗生素污染应用,该制备方法包括如下步骤:1)将六水合氯化铁和七水合硫酸亚铁滴入碱性溶液中,加热反应,真空干燥,冷却至室温,得到Fe3O4磁性纳米颗粒;2)将螯合剂β‑ADA与步骤1)中得到的Fe3O4 MNPs黑色粉末分散于去氧水中,超声处理,固液分离,去除上清液,真空干燥,冷却至室温,得到螯合剂β‑ADA改性的Fe3O4复合材料。本发明的螯合剂β‑ADA改性的Fe3O4复合材料催化剂的制备过程简单方便,成本低,无污染,可回收再生,能有效去除典型抗生素污染物磺胺嘧啶,去除效率高。
本发明提供一种用于催化甲醛分解的复合材料及其制备方法,所述用于催化甲醛分解的复合材料的制备方法包括以下步骤:S1、将由沸石和粘土矿物组成的载体在水中搅拌得到浆液,所述粘土矿物的质量小于等于所述载体的总质量的20%,所述载体加入到吸水率为所述载体的9倍‑11倍的水中,搅拌时间为至少10min;S2、将所述浆液进行改性处理,得到改性载体;S3、将所述改性载体与催化剂在无水甲苯溶液中反应,反应完成后,洗涤、烘干得到所述复合材料。根据本发明实施例的用于催化甲醛分解的复合材料的制备方法,原料易得,方法简便,反应便于控制,通过该制备方法制备的复合材料对甲醛具有高吸附量,该复合材料无需额外输送能量就能对甲醛进行高效率分解。
本发明公开了一种纳米复合材料。所述纳米复合材料包含纳米二氧化钛45‑55%;纳米颗粒0.5‑2.5%;聚酰胺树脂7‑10%;纳米粉体2‑9%;发泡剂12‑15%;稳定剂5.5‑10%;耐磨剂2‑3%;余量为去离子水。本发明的优点是:纳米复合材料中的各个组分之间通过一定的配比而制成,性能好,稳定性高,添加的纳米粉体和耐磨剂相互结合,提高了纳米复合材料的耐磨性能,各个原料之间通过一定的配比而成制成的板材性能稳定,能有效的加强复合材料的柔韧性,大大延长了复合材料的使用寿命。
本发明涉及一种石墨烯/四氧化三铁磁性纳米复合材料的制备方法及应用,属于磁性纳米复合材料技术领域。解决了现有催化剂效率低且不易回收的问题,其包括以下步骤:a.将氧化石墨烯分散液加入蒸馏水中搅拌超声后离心,取上层氧化石墨烯溶液备用;b.将FeCl3·6H2O和FeSO4·7H2O混合后加入去离子水溶解;c.将此溶液加入到氧化石墨烯溶液中,搅拌均匀得混合液;d.向混合液中滴加氨水后晶化,得到复合材料分散液;e.将分散液超声后抽滤分离出石墨烯/四氧化三铁磁性纳米复合材料,洗涤干燥后得所述的石墨烯/四氧化三铁磁性纳米复合材料。本发明可用于制备石墨烯/四氧化三铁磁性纳米复合材料。
本发明提供的一种聚氨酯纳米复合材料的制备方法为:通过溶液溶溶共混法将改性碳纳米管复合纳米材料添加到热塑性聚氨酯弹性体(TPU)中,提高了热塑性聚氨酯弹性体的力学性能和耐热性,进而制备高性能聚氨酯纳米复合软管。通过在酸化碳纳米管表面原位生长纳米二氧化硅(SiO2)和纳米二氧化钛(TiO2)核壳包裹层,形成核壳型碳纳米管复合纳米材料,使碳纳米管(CNTs)、SiO2和TiO2三者能实现均匀分散和复合,通过硅烷偶联剂的偶联改性和TPU有效复合,很好地改善热塑性聚氨酯弹性体的力学性能和耐热性,提高无机材料在复合材料中的分散性,进而制备高性能聚氨酯纳米复合软管,聚氨酯纳米复合材料拓展了热塑性聚氨酯弹性体的应用领域。
本发明公开一种采用双真空袋整体成型复合材料帽型加筋壁板的成型工艺,与传统复合材料帽型加筋壁板的成型工艺相比,以真空袋作为支撑“帽型”部分的内腔模具,使用两个真空袋形成一个整体的真空系统,靠真空系统提供成型复合材料帽型加筋壁板的压力,同时两个真空袋在真空负压的吸附作用下,给复合材料帽型加筋壁板的“帽型”构件提供一定的压力,保证“帽型”构件在浸渍完树脂之后形状稳定,防止变形。本发明提供的双真空袋法真空辅助液体成型技术整体成型复合材料帽型加筋壁板,不仅解决了传统复合材料帽型加筋壁板成型时需专用芯模且脱模难的技术难题,同时也大大地降低了成本。
本发明公开了一种优化复合材料层合板性能的网格铺层结构及制作方法,所述铺层结构,其特征在于,由多条正交垂直的预浸料纵向条带和预浸料横向条带穿插构成,所述铺层结构的长度为矩形条带带宽的2m-1倍,所述铺层结构的宽度为矩形条带带宽的2n-1倍,m,n为自然数。本发明巧妙地利用复合材料结构可设计性这一特点,采用新的铺叠方式进行合理的铺层设计,设计出一种近似三维编织的结构,固化成型后,在采用同种预浸料的前提下,与现有铺层结构相比能够较明显地提高其拉伸强度、抗弯强度、剪切强度等,而采用该编织方式得到的层合板相对于常规层合板,其拉伸、弯曲、层间剪切性能均有一定程度的提高,这对复合材料三维增强技术的发展有极大的促进意义。
本发明的多功能石墨烯和聚二甲基硅氧烷复合材料的制备方法包括以下工艺步骤:1.泡沫石墨烯成型:以一定尺寸的泡沫铜为模板,做成所需的泡沫石墨烯形状,水平放入石英管中,通过化学气相沉积法在泡沫铜金属模板上制备出泡沫石墨烯;2.泡沫石墨烯转移:将上面所制得的泡沫石墨烯用PDMS有机溶液包覆,放入石英管中抽真空,烘干后放入一定浓度的过硫酸铵——(NH4)2S2O8溶剂中将泡沫铜溶出,清洗、烘干后得到由PDMS包覆和固定的、透明导电的有孔三维泡沫石墨烯复合材料,再将PDMS有机溶剂填充进泡沫石墨烯三维材料中,放入石英管中抽真空,烘干后可得到透明、导电、柔性可延展的无孔泡沫石墨烯复合材料。
一种抑制微波固化碳纤维增强复合材料放电击穿的方法,其特征是采用至少以下一种方法,一种是用导电胶带或气体阻隔介质粘贴在碳纤维增强复合材料零部件容易发生放电击穿的区域,起到屏蔽微波、分散感应电流和阻隔气体介质的作用;另一种是使用惰性气体或电负性气体充入到密封碳纤维增强复合材料零部件的真空袋中或密闭加热环境中,采用抽真空的方法,降低碳纤维增强复合材料零部件周围环境的气压,提高放电击穿最高电压值。本发明能够抑制和消除碳纤维增强复合材料在微波固化过程中产生的碳纤维放电击穿现象,避免复合材料在成型过程中的烧蚀和毁坏。
本发明提供了一种基于python的复合材料层合板的建模方法,包括以下步骤:选择生成复合材料层合板的类型;选择层合板是否带孔;选择边界条件;选择目标数据;选择是否分析重叠或间隙;根据复合材料层合板的类型输入复合材料层合板的尺寸参数、铺层结构或曲线函数;Python接收输入的数据,并对数据进行计算;生成有限元模型文件并自动提交至有限元分析软件;采集目标数据并汇总,解决了现有复合材料层合板建模方法过程繁琐、效率低下且需要用户自行提交分析、自行找寻、记录数据,导致工作效率较低的问题,使得用户只需输入参数就可得到所需复合材料层合板的有限元模型,且自动分析、处理数据,并将数据汇总到一个文件中。
本发明提供了一种考虑随机载荷作用的编织陶瓷基复合材料高温疲劳寿命的预测方法,属于复合材料高温疲劳寿命预测技术领域。本发明首先根据界面磨损模型得到界面剪应力衰退速率,根据纤维强度衰退模型得到界面氧化区纤维强度衰退与界面滑移区纤维强度衰退速率,在此基础上根据总体载荷承担准则得到随机载荷作用下的纤维断裂概率;最后根据纤维临界断裂概率与所述随机载荷作用下的纤维断裂概率,预测编织陶瓷基复合材料高温疲劳寿命。本发明考虑了随机载荷作用对编织陶瓷基复合材料高温疲劳寿命的影响,当随机载荷作用下的纤维断裂概率达到纤维临界断裂概率时,编织陶瓷基复合材料疲劳断裂,以此实现编织陶瓷基复合材料高温疲劳寿命的准确预测。
本发明提供了一种热电复合材料及其制备方法,热电复合材料包括Cu2‑xZnxSe和石墨烯;所述x的取值为0.2~1。本发明提供的热电复合材料通过掺杂Zn和石墨烯,提高了热电复合材料的热电性能。实验结果表明:热电复合材料在750℃下达到最大值,不同组成的热电复合材料的ZT值为1.27~1.49。
本发明公开了一种用于光催化脱硫的聚苯胺/二氧化钛/石墨烯复合材料的制备方法:首先以氧化石墨和四氯化钛为原料,通过一步水热法制得二氧化钛/石墨烯复合材料,然后以苯胺为原料,以静电吸附法将被过硫酸铵氧化得到的聚苯胺负载于二氧化钛/石墨烯复合材料表面,得到所述用于光催化脱硫的聚苯胺/二氧化钛/石墨烯复合材料,所述氧化石墨的层数为5~20层。制得的复合材料中二氧化钛为锐钛矿型,具有更多的氧空穴,催化能力更佳;石墨烯增大了光响应范围,提高了电子空穴分离率,增强了光催化能力;包覆的聚苯胺,加强了二氧化钛与石墨烯之间的联系,并且和石墨烯形成了导电网络,加快电子传导速率,并且提高了复合材料的稳定性。
本发明涉及一种用于激光熔接的碳纤维增强PBT复合材料和复合成型体,按重量份计,该PBT复合材料的原料配方包括以下组分:聚对苯二甲酸丁二醇酯100份;碳纤维1‑100份;聚碳酸酯20‑80份;聚丙烯酸树脂10‑40份。本发明将聚对苯二甲酸丁二醇酯和碳纤维进行混合,结合聚碳酸酯和聚丙烯酸树脂,提高PBT复合材料的激光透过性,改变碳纤维在PBT复合材料中的分散状态,从而保留了聚对苯二甲酸丁二醇酯和碳纤维的优势特征,最终使得PBT复合材料具有拉伸强度高、耐热性(负荷温度)高、激光熔接性好、激光熔接强度高的特性。且本发明PBT复合材料配方简单。
本发明涉及高分子材料领域,具体是涉及一种无卤阻燃PC/PLA复合材料及其产品。本发明的无卤阻燃PC/PLA复合材料,包括:PC、PLA、次磷酸盐阻燃剂、磷酸酯阻燃剂及有机硅阻燃剂。所述产品为无卤阻燃PC/PLA复合材料成型后产生的产品。本发明的无卤阻燃PC/PLA复合材料及其产品,通过在PC/PLA复合材料中添加由次磷酸盐阻燃剂、磷酸酯阻燃剂及有机硅阻燃剂的复配阻燃剂,阻燃性佳,能够达到2.0mmV‑0等级,因此能够使无卤阻燃PC/PLA复合材料应用在对阻燃性要求高的电子电器材料中。
本发明公开聚合物导电纳米复合材料的一种制备方法。本发明将可膨胀石墨与聚合物或聚合物溶液在可膨胀石墨可膨化的温度下进行混合直接制得聚合物导电纳米复合材料,或者先将可膨胀石墨与聚合物、聚合物溶液、低分子有机助剂或低分子有机助剂溶液在可膨胀石墨可膨化的温度下进行混合制得纳米石墨导电复合体,然后再与聚合物复合制得聚合物导电纳米复合材料。可膨胀石墨最好是250℃时膨胀容积≥100ML/G的低温可膨胀石墨。可膨胀石墨与聚合物、聚合物溶液、低分子有机助剂或者低分子有机助剂溶液进行混合的整个过程或部分阶段最好是在可膨胀石墨膨胀容积≥100ML/G的温度下进行。本发明工艺简单,制造成本低,易于生产应用。
本发明公开了一种复合材料辊表面处理方法及其浇注用模具,复合材料辊表面处理浇注用模具包括:内管,外管,端盖,注胶口,其中,第二端盖设有密封圈,外管和复合材料辊之间形成浇注空间,密封圈与所述外管、述复合材料辊的底端连接以阻止所述浇注空间内的有机材料液体渗出,通过注胶口向浇注空间浇注有机胶水。本发明的有益效果是:通过设置内管、外管和端盖相互配合,支撑并定位待浇注复合材料辊,形成可变的浇注空间,能够在复合材料辊周面快速浇注不同厚度的复合材料层,处理工序少,并且,用抽真空的方式实现快速而均匀的浇注有机胶水,便于机械化操作,极大的提高了工作效率,并且本发明结构简单,易于操作。
本发明公开了一种成型自监测智能复合材料,涉及复合材料制造领域,包括复合材料主体和传感系统;所述复合材料主体为编织复合材料;所述传感系统包括多功能传感探头和光纤光栅解调仪;所述多功能传感探头可以同时监测温度和应力,包括温度传感部件和应力传感部件;所述温度传感部件由光纤光栅、毛细管、密封剂组成,光纤光栅通过密封剂封装在毛细管中;所述应力传感部件为光纤埋入部分;所述多功能传感探头埋入编织复合材料中,通过光纤与光纤光栅解调仪相连,本发明的结构具有体积小,重量轻的优点,具有优秀的多路复用能力,耐高温性和抗电磁干扰性,其监测结果可靠,对复合材料本身力学性能影响微小。
本申请提供一种碳纤维复合材料固化过程监控管理方法及系统,包括:获取待加工复合材料的基础配料,并根据复合材料的加工需求确定固化参数;根据确定的固化参数对基础配料进行固化;在复合材料固化过程中,实时采集复合材料的状态数据;将采集的复合材料状态数据输入到预设的固化过程监控分析模型中,获取需要优化的固化参数数据;根据获取的需要优化的固化参数数据对固化参数进行优化。本申请实现了对碳纤维复合材料固化过程的自动化智能化监控,无需人工参与,节省了人力,根据固化过程的实际采集的反应数据,对固化过程中的固化参数反馈化的控制。
本发明公开了一种多级消能快速更换的复合材料防护系统,涉及防护系统领域,该多级消能快速更换的复合材料防护系统,包括复合材料板、环形橡胶板和锚固装置,所述复合材料板和环形橡胶板的两侧均开设有凹槽,多组所述复合材料板和环形橡胶板通过凹槽进行拼装,所述复合材料板和环形橡胶板形成间隔设置,所述锚固装置依次穿过多组凹槽并固定连接在承台上。该多级消能快速更换的复合材料防护系统整体弹性消能效果良好,而且由于产品形制单一,可连续化,工业化生产,可根据设防等级要求定制防护产品厚度,设计性好,在后期维护中只需要更换部分损坏的防护设施,施工简便,经济性优势突出。
本发明涉及一种硅基复合材料及其制备方法,所述制备方法包括以下步骤:(1)在碳材料的表面均匀气相沉积硅基材料;(2)对步骤(1)所得材料进行碳包覆;(3)对步骤(2)所得材料进行物理除磁处理。本发明还涉及包含所述硅基复合材料的锂离子电池负极材料和锂电池。本发明的硅基复合材料的制备方法解决了硅基材料的制备与均匀分散两个问题,且具有流程简单、易于规模化生产等优点,所得复合材料用于锂离子电池负极材料表现出优异的循环性能及良好的倍率性能。
中冶有色为您提供最新的江苏有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!