一种非对称多齿氮杂环金属配合物及其制备方法,制备步骤包括:(1)在氮气保护下,将乙醚和苯胺加入到反应器中,在-5℃~5℃下加入与苯胺等摩尔的丁基锂,室温反应过夜,再加入三甲基氯硅烷,反应12小时;过滤,滤液中加入与苯胺等摩尔的丁基锂,反应12小时;过滤,抽干;(2)在氮气保护下,加入正已烷,在-5℃~5℃下加入二倍苯胺摩尔量的二甲氨基腈或1-哌啶腈,反应10小时,在-5℃~5℃下,加入0.5倍苯胺摩尔量的四氯化锆或四氯化铪,升至室温,反应5~20小时,过滤,浓缩滤液,得非对称多齿氮杂环金属配合物。该配合物在助催化剂甲基铝氧烷存在下,具有很好的乙烯催化活性。
本发明公开了一种集中供热大温差集中组合式梯级换热机组,解决了如何深度利用电厂各类余热的问题。第一级是由二次网的第一循环泵(43)前的回水经过第一升压泵(6)升压后,经过第二压缩式热泵(9)的蒸发器降温后补入一级网回水;第二级是由一级管网上的溴化锂吸收式换热机组(2)出水进入第一压缩式热泵(4)的蒸发器入口降温后汇入一级网回水总管,二级网回水经过第一循环泵(43)升压后进入第一压缩式热泵的冷凝器升温后与二级网供水总管混合;第三级是由溴化锂吸收式换热机组(2)由一级网换热回水降温后进入第一压缩式热泵继续降温后汇入一级管网回水总管;第四级是由一级网供水与二次网供水混合加热后达到设计要求的温度供出。
本发明涉及一种高色纯度有机白光二极管的制备方法,此二极管具有六层平面结构,用导电玻璃氧化铟锡为基层阳极层,N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4′-二胺为空穴传输层,2-(4-三氟甲基-2-羟基苯基)苯并噻唑锌为白光发光层,8-羟基喹啉铝为电子传输层,氟化锂为电子注入层,铝为阴极层,制备在真空蒸镀炉中进行,在0.0005Pa、25℃±2℃状态下蒸镀,通过材料加热升华、形态转化、薄膜生长,制成厚度为246.5nm的白光二极管,白光性能好,色纯度高,色坐标为x=0.31,y=0.34,显色指数为90.2,此制备方法没有掺杂,制备过程易控制,重复性好,工艺流程短,所需材料少,制作成本低,膜层结构简单,透射率高,发光效率高,使用寿命长,不易变色。
本发明为一种硼掺杂硅基负极材料的制备方法,属于锂离子电池负极材料制备方法和固废资源化利用技术领域。本发明方法是将晶体硅切割废料经酸化、离心、洗涤、高能超声活化、干燥后得到的超细粉与导电剂、粘结剂按配比混合研磨,制得所述的硼掺杂硅基负极材料。通过本发明方法制得的硼掺杂硅基负极材料具有高比容量、优异的倍率性能和循环稳定性,可应用于高比能锂离子电池的规模化生产。
本发明涉及空气气氛下基于球磨法制备硅碳复合材料的方法及其应用,属于锂离子电池技术领域,具体涉及的是空气气氛下通过球磨法制备硅碳复合材料及其在锂离子电池负极材料上的应用,解决球磨法制备硅碳复合材料时需要惰性气氛保护的技术问题。其解决方案为:将硅纳米颗粒包覆一层二氧化硅层,避免硅颗粒在高温下被直接氧化为二氧化硅,这样可以在无需惰性气氛保护直接空气气氛中通过球磨法制备得到高含量硅碳复合物。该方法减少了惰性气氛的填充,降低了对球磨设备的要求,保证了硅碳复合材料中硅的含量,从而利于提高复合材料的比容量值。
本发明提供了一种3:1型Li/Mg双金属催化剂及其制备方法和应用。催化剂制备方法:1)制备N,N,O‑三齿的胺基醇配体;2)在惰性气体保护和冰水浴下,将1.5倍量的正丁基锂逐滴滴加到胺基醇的乙醚溶液中,所得反应液中滴加0.5倍量的二丁基镁,然后滴入0.5倍量水的乙醚溶液,待反应完毕后过滤,真空浓缩滤液,析出无色透明晶体即可。该催化剂制备方法简便,条件要求低,使用廉价、低毒性的非过渡金属锂、镁为催化活性金属,对不同类型的醛、酮化合物还原制备相应的一级和二级醇类化合物的Meerwein‑Ponndorf‑Verley(MPV)反应具有较高选择性和催化活性,该催化反应时间短,产率高,有很好的工业应用前景。
本发明一种铜‑铝‑硅纳米合金材料的热处理方法及其应用,属于锂电池负极材料制备技术领域,本发明克服现有技术的不足,提供一种采用热处理方法处理铜‑铝‑硅合金纳米材料及其应用,采用的技术方案为:所述的热处理方法是在配料、熔炼、制粉、分离和筛选步骤后进行真空干燥后进行的,将干燥后的铜‑铝‑硅纳米合金粉末进行热处理,热处理温度为250~500℃,时间为48~90h;所述的铜‑铝‑硅纳米合金的成分为按重量份计的:硅22~70份,铜20~70份,铝0.5~15份,杂质0~5份,粒径≤80μm,本发明可广泛应用到锂电池负极材料领中。
本发明涉及臂架类起重机幅度、倾覆力矩和起升高度测量与控制装置,该装置包括锂电热源、激光测距仪、轴销式称重传感器、数据采集与分析芯片、显示器、过载控制装置与报警装置等。锂电热源、激光测距仪和轴销式称重传感器将检测到的信号发送给数据采集与分析芯片进行数据适时处理,并将吊重、幅度、倾覆力矩和起升高度在显示器适时显示,遇到限制值越界及时报警并切断机构电源,起重机停止作业。本发明通过激光测距仪和轴销式称重传感器信号间接表征幅度、倾覆力矩和起升高度的数据,检测过程不受臂架变形影响,信号并联采集提高了控制精度和可靠性,本发明也是实现起重机司机离机近远程操作的基础装置。
本发明一种微孔电池铝箔的化学热腐蚀制备方法,属于电池铝箔的制备技术领域,本发明克服现有技术的不足,目的是提供一种高性能锂电池微孔铝箔的化学热腐蚀制备方法,采用的技术方案为:按照下述步骤进行:第一步,对轧制后的电池铝箔进行表面清洗祛除润滑剂;第二步,将清洗后的电池铝箔全部浸入化学腐蚀液:所述的化学腐蚀液为盐溶液,含有摩尔浓度为0.1‑3mol/L的Cl‑的阴离子,含有摩尔浓度为0.1‑3mol/L的Fe3+和Cu2+的阳离子,腐蚀液温度为45±2℃,腐蚀时间为20‑120S;第三步,腐蚀后的电池铝箔清洗表面残留液体;第四步,烘干;本发明可广泛应用到锂电池微孔铝箔的制造领域。
一种松针状碳纳米管/碳纤维导电网络复合碳材料的制备方法,所述制备方法是以碳纤维织物的纤维为生长基底,在所述生长基底上生长高密度排列的碳纳米管;所生长高密度排列的碳纳米管连同碳纤维基底形成三维多孔的松针状碳纳米管/碳纤维导电网络复合碳材料,具有高的比表面积是担载活性物质或者反应物质的理想材料,优异机械强度可以抑制材料在反应过程中的结构破坏,同时碳纳米管与碳纤维相互交叉或重叠接触有利于提高复合材料导电框架的完整性,该复合材料在燃料电池、超级电容器、锂空电池、锂硫电池以及有机太阳能电池等具有广泛的应用前景。
本发明公开了一种全无机固态电致变色器件,包括两侧设置的透明玻璃基板A和透明玻璃基板B,设置于透明玻璃基板A上靠近于中部的透明导电薄膜层I,设置于透明玻璃基板B上靠近于中部的透明导电薄膜层II,设置于透明导电薄膜层I内侧的电致变色层,设置于透明导电薄膜层II内侧的离子储存层,设置于电致变色层内侧的电子阻挡层I,设置于离子储存层内侧的电子阻挡层II;设置于电子阻挡层I和电子阻挡层II中间的离子传输层;所述电致变色层采用WO3掺杂TiO2薄膜,所述离子传输层采用锂磷氧氮(LiPON)薄膜,所述离子储存层采用V2O5薄膜本发明解决了电致变色器件循环使用过程中一直存在的变色性能不稳定,循环寿命差的缺陷。
本发明涉及一种发黄光的有机电致发光二极管及制备方法,它是以8-羟基喹啉铝、酞菁铜、氟化锂、铝为原料、以罗丹明B为荧光染料掺杂剂,以氧化铟锡导电玻璃为发光器件的基底,以无水乙醇、甲苯、丙酮为清洗剂,以稀盐酸为刻蚀剂,采用9层量子阱结构,通过刻蚀氧化铟锡导电玻璃、清洗剂超声清洗、真空干燥、精选化学物质原料,采用合理的配比、真空蒸镀、冷却、检测分析,最终制得发黄光的有机电致发光二极管器件,黄光二极管9层量子阱结构中势垒与势阱层厚度均为3nm±0.5nm,各层电压均匀一致,可储存光能,并以辐射形式释放出光,器件本身不发热,延缓了老化,提高了器件的使用寿命,本发明制备工艺流程短,使用设备少,器件发光效率高,黄光色纯度好,色坐标为X=0.4457,Y=0.5054,导电性能好,安全、稳定、可靠,易于和其他发光器件匹配,使用领域广,是十分理想的发黄光的有机电致发光二极管及制备方法。
本发明公开了一种ZIF‑8@PEGMEM‑co‑AMPS‑Li单离子聚合物固体电解质及其制备方法。ZIF‑8@PEGMEM‑co‑AMPS‑Li单离子聚合物固体电解质的制备过程为:将ZIF‑8与2‑丙烯酰氨基‑2‑甲基‑1‑丙烷磺酸单体和甲基丙烯酸聚乙二醇甲醚酯单体混合后,通过自由基引发剂引发聚合反应,聚合反应完成后,采用氢氧化锂溶液锂化,沉降,即得具有良好的离子电导率、电化学窗口以及与电极接触界面相容性好等特点的ZIF‑8@PEGMEM‑co‑AMPS‑Li单离子聚合物固体电解质,能够有效克服现有技术所存在的缺陷。
本发明涉及一种电池正极材料及正极片的制备方法,所述正极材料为掺铬、氟复合尖晶石型氧化物LiCrxMn2‑xO4‑yFy(0≤x≤0.5,0≤y≤0.3)。采用一步混合将锂的化合物、三氧化二铬、锰的化合物以及氟化锂按照比例n(Li):n(Cr):n(Mn):n(F)=1:x:2‑x:y混合均匀,然后在烘干箱中100‑200℃烘干5‑10h,在空气中530‑550℃热处理5‑10h,继续升温到650‑750℃,保温10‑20h,最终缓慢冷却到室温。该产物纯度高,用于热电池中稳定性好,电压平稳,容量大,在250℃下以10mA/cm2的电流密度放电,所测最高放电容量达到842 mAh/g。应用于地热或者石油—天然气勘探的钻孔设备中,能在高温、高压等严酷条件下持续平稳供电。本发明所述制备方法简单,生产和制造成本低廉。
本发明一种铜‑铝‑硅纳米合金材料的振动时效处理方法及其应用,属于锂电池负极材料制备技术领域,本发明克服现有技术的不足,提供一种采用振动时效处理方法处理铜‑铝‑硅合金纳米材料及其应用,采用的技术方案为:所述的振动时效处理方法是在配料、熔炼、制粉、分离和筛选步骤后进行真空干燥后进行的,将干燥后的铜‑铝‑硅纳米合金粉末进行振动时效处理,采用电磁振动时效仪,电磁振动频率3000~5000Hz,振动时间24‑150小时;所述的铜‑铝‑硅纳米合金的成分为按重量份计的:硅22~70份,铜20~70份,铝0.5~15份,杂质0~5份,粒径≤80μm;本发明可广泛应用到锂电池负极材料领中。
生物柴油催化剂X-Ca-Zn-Al-O及制备方法。本发明以铈或镧或锂、钙、锌、铝的硝酸盐为原料,尿素为沉淀剂,经均匀沉淀、过滤、水洗、干燥、焙烧制得X-Ca-Zn-Al-O固体碱催化剂。对催化剂前驱体进行了TG表征,对催化剂进行了碱强度、碱位量及BET、XRD及SEM表征,对催化剂制备过程发生的物理化学变化以及催化剂表面性质与其催化活性之间的关系进行了分析。以蓖麻油甲醇解反应为探针反应,以蓖麻油转化率为催化剂活性评价指标,采用单因素试验考察了制备条件对催化剂活性的影响,找到了制备固体碱催化剂的优化工艺。
本发明提供了一种高压电力线无线温度采集系统,包括温度节点、路由器、终端设备和上位机,温度节点的数据发送到就近的终端设备或路由器,路由器接收到的数据再转发到终端设备,终端设备与上位机连接;终端设备接收上位机的设置、命令,并将温度数据通过串行接口传到上位机显示。本发明采用锂电池供电的低功耗温度节点,并通过无线方式传输数据,系统易于安装,运行安全稳定、抗干扰能力好,保证测温数据的准确可靠,温度节点的功耗较现有产品可降低3倍以上,大大地延长了电池的使用寿命,且实时在线,响应速度快,体积小,可节省大量的人力、物力。
本发明涉及一种多组元协同强化铝基复合材料的制备方法,其针对铸造铝锂合金力学性能差的情况,在铝锂合金中添加不同的合金元素及内生的碳化钛相,通过熔炼、氩气底吹、电磁搅拌、挤压铸造和热处理,制成多组元协同强化铝基复合材料;此制备方法工艺先进,工序严密,数据精确翔实,制备出的铝基复合材料抗拉强度达485MPa,硬度达189Hv,是一种先进的多组元协同强化铝基复合材料的制备方法。
本发明提供一种邻甲氧基苯腙的双核钛金属配合物及其制备方法,以及该配合物作为催化剂在制备高分子量聚乙烯中的应用。该配合物的制备方法为邻甲氧基苯腙与二异丙基氨基锂(LDA)发生去氢反应后,再与二分之一摩尔量的TiX4(THF)2的四氢呋喃溶液反应得到。本发明制备的双核钛配合物催化剂制备简单,所用原料价廉易得,经甲基铝氧烷(MAO)或者改性的甲基铝氧烷(MMAO)的活化可用于催化乙烯聚合。实验结果表明,本发明采用的催化体系可用于制备高分子量的线性聚乙烯,所得大多数聚乙烯的重均分子量在一百万以上,熔点较高在133.4-134.8℃之间,分子量分布在1.90-3.33之间,催化活性为中等。
本发明公开了一种双路恒流点火驱动电路,解决了现有点火装置点火后点火桥丝搭接形成危险短路电流的问题。点火时延时电路给出点高电平,经过第二三极管V2基极限流电阻R4与R6后第二三极管V2导通,将第一P型场效应管Q1栅极电平拉低,第一P型场效应管Q1导通,锂电池电源1的电流通过第一P型场效应管源极流出到漏极,通过可调电阻R8输出到第二P型场效应管Q2的源极,分压电阻R9和第二分压电阻R10分压后的电压施加到第二P型场效应管栅极,这时第二P型场效应管导通,电流从第二P型场效应管源极流出到漏极最后流入到爆炸螺栓点火桥丝上,点燃爆炸螺栓。本发明电路结构简单,点火电流调整方便,有效的抑制了危险的短路电流的产生。
本发明为一种具有超高比电容特性的水钠锰矿型氧化锰粉体及其制备方法与应用。所述氧化锰粉体理想的化学式为M2xMnO2+x,通式中M为Li、Na、K阳离子的任意组合,其中x介于0.1-0.5之间。所述氧化锰粉体的制备方法为:控制高锰酸盐与有机燃料的摩尔比,将有机燃料溶液滴加到高锰酸盐水溶液中;之后置于马弗炉当中加热,最后即可获得所需的所述的水钠锰矿型氧化锰粉体。本发明公开的氧化锰粉体生产原料廉价、设备简单、生产效率高,并且比电容特性优良(在1A·g-1电流密度下可达1055F?g-1),可应用于超级电容器、锂/钠/镁离子电池、离子交换、光解水等领域,用途广泛。
本发明公开了一种基于NB‑IOT的数据安全型训练手环,包括手环本体和腕带,所述腕带设置在手环本体的两侧;所述手环本体的表面设置有防水硅胶外壳,所述外壳的内部设置有控制MCU芯片、加速度传感器、温度传感器、心率传感器、移动NB‑IOT GNSS模组和锂电池,其中加速度传感器、温度传感器、心率传感器设置在控制MCU芯片的一侧,移动NB‑IOT GNSS模组和锂电池设置在控制MCU芯片的另一侧;位于手环本体左侧的所述腕带的右端设置有环形套,位于手环本体右侧的所述腕带的右端穿过环形套设置在位于手环本体左侧的腕带上。本发明通过NB‑IOT与平台远距离数据通信,避免了以手机通信方式的安全隐患,增强用户体验,且脱离了以手机为媒介的通信方式,具有较强的实用性。
本发明一种用于制备微孔铝箔的氯盐腐蚀剂,具体涉及一种高性能锂电池正极材料的腐蚀剂,本发明克服现有技术的不足,目的是提供一种高性能锂电池正极集流体材料的腐蚀剂,为解决上述技术问题,本发明所采用的技术方案为:一种用于制备微孔铝箔的氯盐腐蚀剂,所述的氯盐腐蚀剂为盐溶液,所述的氯盐腐蚀剂为阴离子只含有氯离子的盐溶液,Cl‑的摩尔浓度为0.1‑3mol/L,阳离子含有摩尔浓度为0.1‑3mol/L的Fe3+和Cu2+,本发明可广泛应用到电池铝箔制造领域中。
一种改进的直流微电网中混合储能系统自适应下垂控制方法,涉及直流微电网的稳定运行领域;其特征是所述改进的直流微电网中混合储能系统,是由锂电池通过DC/DC变换器I连接于直流母线上,超级电容通过DC/DC变换器II连接于直流母线上,形成并联结构的混合储能系统。本发明有效解决了混合储能系统在直流微电网中锂电池对超级电容有效补偿能量的问题,提供一种直流微电网中混合储能系统改进自适应下垂控制方法。
本发明公开了一种过渡金属调控的针状焦的制备方法及其在锂离子电池中的应用,所述的过渡金属调控的针状焦是以煤系针状焦为底物,经过活化处理后与过渡金属盐进行水热混合处理,再进行简单焙烧使得金属对表面加以修饰后,通过低浓度的酸洗去除表面的金属得到高性能的电极材料。本发明方法制备工艺简单,安全有效,操作时间短且作为锂离子电池负极材料表现出优异的循环性能及倍率充放电性能,在能量存储领域有着广阔的应用前景。
本发明涉及一种用重油残渣为原料制取碳微球的方法,它是以重油残渣为原料,以盐酸、去离子水为清洗剂、以惰性气体—氩气为保护气体,在高温1100℃±10℃状态下,使重油残渣进行化学、物理形态转换,即固态—液态—气态—固态,在管式高温炉内的石英管高温区内壁上气相沉积,生成团簇状黑色圆形碳微球,碳微球粒径0.4-0.6μm,球体呈均匀的圆形颗粒,无碳纤维和石墨片等副生成物,具有高纯特点,不需纯化,此制取方法不使用催化剂,工艺流程短,制备方法简单,材料来源丰富,制取成本低,碳微球纯度高,碳元素含量可达99.5%,产收率高,可达70%,产物物理、化学性能稳定,能与多种化学元素匹配,可在活性炭、石墨、锂电池电极等领域广泛应用,是十分理想的不用催化剂直接制取碳微球的方法。
本发明涉及一种发蓝绿光的发光二极管及制备方法,以偏蓝+绿光的二(8-羟基喹啉)乙酰丙酮合铝Alq2A为蓝绿光发光材料、以4,4’,4”-三[2-萘基(苯基)胺]三苯胺为空穴注入层、以N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺为空穴传输层、以氟化锂为电子传输层、以铝为阴极层、以导电玻璃氧化铟锡为阳极层,采用真空蒸镀、形态转换、气相沉积、薄膜生长法生成蓝绿光二极管,在真空状态下,通过化学物质固态—气态—固态形态转化,在导电玻璃上生成纳米级导电薄膜,不使用染料掺杂,直接由偏蓝+绿的Alq2A生成蓝绿光二极管,发光管强度好、亮度高,蓝绿光色坐标为X=0.2354,Y=0.5132。
本发明涉及磁流变材料技术领域,具体为高性能磁流变纳米复合高分子凝胶制备方法,解决现有的凝胶分散性、稳定性差,机械性能和磁流变性能无法同时提高的问题,方案为:FeCl2?4H2O、FeCl3?6H2O、表面活性剂溶于水;加NaOH,磁分离超声分散,分散去离子水中;锂皂石加到去离子水中,加入高分子单体;加入引发剂和催化剂,加入分散液;抽真空,密封反应。优点:1、纳米磁性粒子不沉降,磁性粒子与凝胶聚合物基体之间的相互作用力增大,提高了稳定性和分散性;2、形成三维交联网络结构,填充量大、可控性更好;3、力学性能和磁流变性能兼优,拉伸强度、断裂伸长率、磁流变效应、相对磁流变效应高。
本发明提供了一种七元氮杂镁金属催化剂及其制备方法和应用,制备方法:1)制备1-(2-(二甲基氨基)苄基)环己醇;2)在惰性气体保护下,将等当量的正丁基锂逐滴滴加到1-(2-(二甲基氨基)苄基)环己醇的乙醚溶液中,搅拌1小时,然后在冰水浴中缓慢滴入当量的溴化镁四氢呋喃溶液,恢复室温搅拌2小时,反应完毕后真空浓缩滤液,用二氯甲烷萃取,萃取液再换用四氢呋喃重结晶,室温析出无色透明晶体即可。该催化剂制备方法简便,原料易得,使用廉价的非过渡金属镁为催化活性金属,反应条件温和,对酮类化合物的转移氢化反应合成相应的二级醇类化合物具有较高催化活性,该催化反应时间短,产率高,对环境污染小,有很好的工业应用前景。
中冶有色为您提供最新的山西太原有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!