本发明公开了一种表面改性的锂离子电池高镍正极活性材料,其基体物质为高镍正极活性材料LiNixCoyMzO2,基体物质的表面均匀包覆锂离子导体化合物,该导体化合物包括LiAlO2、Li4Ti5O24、Li2ZrO3中的至少一种;该正极活性材料中总杂质锂的含量在0.085%以下。本发明还公开了该正极活性材料的制备方法,先将基体物质与含铝有机溶液、含钛有机溶液或含铝/钛/锆的有机悬浮液混合,干燥;将干燥后的混合物再进行煅烧,最后在基体物质表面生成锂离子导体化合物,得到表面改性的锂离子电池高镍正极活性材料。本发明的产品不仅碱性物质含量显著降低、材料的加工性能得到改善,而且电化学稳定性得到提高。
本发明公开了一种碳酸锂生产中碳酸钠溶液的净化方法,包括以下步骤:1、配制Na2CO3质量百分比浓度为25%的碳酸钠溶液;2、加入固体氢氧化钠,使碳酸钠溶液中的Ca、Mg离子与NaOH反应并沉淀完全得混合料液;3、将混合料进行初级压滤得初级过滤液;4、将初级过滤液进行深度过滤,使滤液中Ca、Mg含量≦10ppm,得净化后的碳酸钠溶液成品;5、将碳酸钠溶液成品用于与氯化锂溶液进行反应的碳酸锂生产工艺。本发明方法的特点是,在传统的碳酸锂生产工艺之前加入了深度净化碳酸钠溶液的工序,可以降低工业级碳酸钠产品中Ca、Mg离子的含量,用于制备电池级标准的碳酸锂品级。
本发明公开了一种表面包覆Li2TiO3的钴酸锂基复合正极材料,以含钛的钴酸锂基复合材料为基体,表面包覆Li2TiO3,其中表面包覆的Li2TiO3质量占正极材料质量的0.2~5%;所述含钛的钴酸锂基复合材料的分子式为xLi2TiO3·(1-x)LiCoO2,其中0.01≤x≤0.10。本发明的表面包覆Li2TiO3的钴酸锂基复合正极材料在高电压下化学性能优异,电压范围为3.0-4.6V,电流密度为20mA/g时,首次放电比容量达到200mAh/g以上;电流密度为1A/g时,放电比容量达到190mAh/g;在电流密度为200mA/g时,充放电循环50次后容量保持率高于90%。
一种用软锰矿氧化石煤钒矿制备锂电池复合前驱体的方法,包括以下步骤:(1)将含锰量≥28wt%的软锰矿与含钒量≥0.8wt%的石煤钒矿按Mn∶V元素物质的量之比为1∶0.5~1混合,再加入钒源使锰钒元素物质的量之比为1∶2,按固液质量比为1∶1~2加入酸液;(2)将混合液置于水浴锅中,于60~90℃下保温2~12h,然后过滤;(3)调节滤液的pH至5~7,得到砖红色沉淀;将所得沉淀洗涤3~5次,过滤、烘干,即得。本发明原料价格低廉,来源广,产品利用率高且稳定;适合为锂离子电池复合正极材料磷酸锰锂-磷酸钒锂的大规模生产提供优质的钒锰源,实现钒锰资源的综合利用。
本发明公开了一种锂离子电池正极材料镍钴铝的制备方法,包括以下步骤:将镍盐溶液和钴盐溶液混合均匀,再将络合剂溶液、沉淀剂溶液与所述混合后溶液一起并流加入装有底液的反应釜中进行一次沉淀反应,充分反应后进行固液分离,再洗涤;将洗涤后的固体料加入到反应釜中,再缓慢滴加铝盐溶液和沉淀剂溶液进行二次沉淀反应,使铝元素逐渐沉淀到该固体料表面,整个过程不断搅拌,反应结束后进行固液分离,固体料经洗涤、烘干后,得到锂离子电池正极材料前驱体;将前驱体与锂源混合,在通氧条件下进行两段烧结,两段烧结后的焙烧料经破碎及后续处理,得到锂离子电池正极材料镍钴铝。本发明的方法具有设备要求低、自动化程度高、操作简单、环境友好、浪费少、产品质量好等优点。
本发明公开了一种层状富锂锰基正极材料,其化学式为:本发明所提供的层状富锂锰基正极材料,硼和铝元素可以进入层状富锂锰基的晶体结构中,起到稳定结构的作用,从而提高循环过程的稳定性,硼铝共掺杂既可以抑制首次充放电结束时氧空位的消失,从而提高首次充放电效率;掺杂原子占据材料四面体结构间隙位置,阻断过渡金属离子的迁移路径,从而缓解了平均放电电压下降,并且部分掺杂元素沉积在材料颗粒的表面,增大离子传输的动力学,而改善了层状富锂锰基正极材料的倍率性能;硼铝共掺杂可以发挥两种金属元素的协同作用,使得层状富锂锰基正极材料在动力电池及储能领域具有广泛的应用前景。本发明制备方法工艺简单,操作方便,降低了设备要求及制作成本,能够满足工业化生产要求。
本发明公开了一种基于科琴黑的锂硫电池硫基纳米正极材料,包括硫纳米颗粒和科琴黑,科琴黑孔径为2nm-20nm,硫纳米颗粒位于科琴黑孔道内,硫基纳米正极材料中硫与科琴黑的质量比≥1。本发明还公开了上述锂硫电池硫基纳米正极材料的制备方法:将科琴黑、表面活性剂、水与酸混合,形成溶液A;将含硫化合物和表面活性剂溶于水,形成溶液B;将溶液B通过蠕动泵逐滴加入溶液A中进行反应,蠕动泵的转速为0.5-1r/min,反应时间为10~20h,形成锂硫电池硫基纳米正极材料前驱体;将前驱体用超纯水洗至中性、过滤、烘干,即得到基于科琴黑的锂硫电池硫基纳米正极材料。本发明的锂硫电池硫基纳米正极材料成本低、容量大、寿命长。
本发明公开了一种采用烧结的方法,先将锰源材料在烧结炉中,以1~4℃/min的速度升温至600~900℃,烧结3~20h,得到低SO42-质量百分含量的锰酸锂前躯体。再以此锰酸锂前驱体与碳酸锂按Mn︰Li=2︰1.05的摩尔比配料混合,在烧结炉中以1~5℃/min的速度升温至700~900℃,烧结12~20h,得到SO42-含量≤0.2%的锰酸锂产品。本发明制备的锰酸锂正极材料中SO42-含量低,装配的锂离子电池1C倍率下循环1000次容量保持率>80%,在提高首放容量的同时,显著提高了锂离子电池正极材料锰酸锂的循环性能和储存性能,为锰酸锂材料在锂离子动力电池行业的快速发展奠定了良好基础。
本发明属于锂二次电池负极材料领域,具体公开了一种二次电池用金属锂负极,包括集流体,复合在集流体上的锂铋合金基底层,以及复合在锂铋合金基底层表面的锂化合物层。本发明还公开了所述的二次电池用金属锂负极的制备方法,将铋的化合物、导电剂和粘结剂浆化后复合在集流体表面,随后再将复合在集流体上的铋的化合物和金属锂反应,制得所述的二次电池用金属锂负极。本发明独创性地发现,通过所述铋的化合物与金属锂的化学反应,生成有效的锂铋合金;促使金属锂在铋骨架中均匀生长,同时生产有效的SEI膜,保护金属锂,避免锂枝晶产生,从而提高金属锂负极的充放电库伦效率及循环寿命。
本发明提供了一种一步对锰酸锂掺杂、包覆双重改性的方法,通过本发明的方法得到的产物中,四氧化三锰表面的铝源在热处理的过程中部分铝会进入外层锰酸锂形成LiMn2-xAlxO4固溶体,其余的铝以氧化物的形式存在,对锰酸锂达到了包覆、掺杂双功能改性。氧化铝层可以有效地隔开锰酸锂与电解液的直接接触;LiMn2-xAlxO4固溶体在不阻碍锂离子通过的条件下具有比LiMn2O4更稳定的结构。双功能改性有效的抑制了二价锰的溶解,提高了锰酸锂的循环性能和高温性能。
本发明属于电池材料技术领域,具体涉及一种磷酸铁锂正极材料及其制备方法。本发明提供的磷酸铁锂正极材料具有多孔结构,化学通式为LixFeyNzPO4/C,1C放电容量为146‑151 mAh/g,10C放电容量为133‑138 mAh/g,压实密度为2.4‑2.6 g/cm3。本发明通过原料的选择以及合成工艺的优化,直接合成磷酸铁锂材料,并实现N的掺杂以及C的包覆。在原料选择方面,本发明选用磷酸锂作为主要锂源,选用碳酸锂作为补充锂源;选用铁粉作为主要铁源,选用硝酸铁作为补充铁源;磷酸锂和磷酸作为磷源。上述原料的选择,大大降低了生产成本,同时,硝酸铁作为补充铁源的同时,提供可掺杂的N元素。
一种从硫酸钠亚型盐湖卤水提锂的工艺,包括以下步骤:(1)将硫酸钠亚型含锂卤水经预处理后,进行纳滤膜分离,分别得到含锂渗透液及二价截留液;(2)含锂渗透液经浓缩,并作为高锂母液备用;(3)所得二价截留液通过冷冻进行脱硝处理,得脱硝液;(4)将脱硝液与高锂母液进行兑卤,结晶反应得到碳酸锂粗产品和结晶母液;(5)将所得碳酸锂粗产品经再浆洗涤和脱水、干燥,得工业级碳酸锂产品。本发明克服传统蒸发浓缩工艺成卤率低、母液夹带量大和锂收率低的技术缺陷;膜浓缩工艺高效快捷,生产周期短,克服卤水浓缩对盐湖所在地盐田建设条件的局限,大大降低提锂成本。
本发明公开了一种基于锂电池功率估计的混合储能控制系统及其能量管理方法,其中能量管理方法为:采集锂电池组的开路电压、电流和SOC;根据锂电池组的开路电压、电流,对锂电池组进行参数辨识,估计当前锂电池组的最大充放电功率;将当前锂电池组的最大充放电功率作为自适应控制的上限和下限,进而采用自适应下垂控制策略对锂电池组的分配功率进行限制;根据混合储能系统的总需求功率和锂电池组的分配功率,对超级电容组进行功率分配;生成锂电池组和超级电容组各自DC/DC模块的控制信号,以各自输出功率为各自的分配功率,综合为电动汽车提供总需求功率。本发明可以保护锂电池组受到尖峰充放电功率的影响,提高锂电池组的使用寿命。
本发明公开了一种小粒径补锂添加剂Li5FeO4的制备方法,包括以下步骤:(1)将草酸亚铁和锂源溶于溶剂中并混合均匀,干燥,得到粉状混合料;(2)将所述粉状混合料在氧气气氛中烧结,随炉冷却,粉碎,过筛,得到D50为0.8‑2.6μm的小粒径补锂添加剂Li5FeO4。本发明制备的Li5FeO4粒径在0.8‑2.6μm之间,粒径分布更均匀,结晶质量更好,纯度更高;利用该方法制备的粒度范围内的Li5FeO4,锂离子扩散的距离短,倍率性能好,Li5FeO4材料无明显团聚现象,Li5FeO4与其它正极材料混料均匀,彼此充分接触,锂离子能最大程度从材料中脱出,显著提高锂离子电池首次效率和能量密度。
本发明公开了一种锂硫电池柔性正极的制备方法,该柔性正极由负载S1-xSex的掺氮多孔碳纤维分散在石墨烯片层之间组成的。具体制备方法是首先将硫和硒与掺氮多孔碳纤维复合形成掺氮多孔碳纤维/S1-xSex复合材料,然后将石墨烯和掺氮多孔碳纤维/S1-xSex复合材料加入到溶剂中,超声分散得到石墨烯和掺氮多孔碳纤维/S1-xSex复合材料复合悬浮液,真空抽滤复合悬浮液得到滤饼,烘干即可得到石墨烯/掺氮多孔碳纤维/S1-xSex复合材料的柔性正极。该制备方法得到的锂硫电池柔性正极具有导电性好、固硫固硒效果好、机械强度高等优点。同时,制备方法简单,无需复杂的涂布工艺,无需添加粘结剂、导电剂和集流体,制得的柔性正极应用于锂硫电池,表现出优异的电化学性能。
一种含M的多功能金属氧化物修饰的高电压钴酸锂正极粉末材料及其制备方法,其通式为:LiaCo1-x-yM′xMyO2,核壳型结构,在正极材料内核外包覆有一层惰性保护层,惰性保护层中至少含有M的氧化物,或M和M′对应的复合氧化物;制备时先将电池级的锂源、钴源、含M及M′添加剂按照相应比例进行混合,将所得的混合料进行恒温烧结,将所得的烧结产物进行粉体处理,即得到高电压钴酸锂正极粉末材料。本发明的产品在高电压下质量能量密度大、循环性能和安全性能优异。
本发明公开了一种制备电池级碳酸锂的方法,包括以下步骤:1)分析浓缩卤水中各元素含量;2)除S;3)除Ca、Ba、Mg、Fe离子;4)深度除Mg、Fe离子;5)深度除Ca、Ba离子;6)深度除杂;7)沉锂。本发明通过对浓缩卤水的分析,确定了卤水中杂质的含量,并根据杂质的性质,设定了相对应的除杂步骤并进行了深度除杂,杂质去除彻底,获得碳酸锂纯度高。而且在除杂过程中,利用不同温度和不同pH值条件下杂质沉淀的溶度积不同;通过严格控制反应条件,减少碳酸锂沉淀的析出,降低了锂源的损失,提高了锂的回收率。其次,本发明工艺和设备相对简单,易于实现对浓缩卤水的大规模处理。
一种提高锂离子电池正极材料循环稳定性的方法,它属于锂离子电池正极材料领域。其由正极材料及均匀致密包覆在表面的金属氧化物组成,所述的正极材料包括锰酸锂、硅酸锰锂、镍钴锰酸锂等,所述的金属氧化物主要为Al2O3、ZnO、TiO2、Nb2O5、ZrO2、Ta2O5等。这些金属氧化物包覆层的存在,一方面,可以更好更快的传递锂离子,另一方面,在循环过程中,可阻止电解液与正极材料接触,进而防止正极材料溶解在电解液中,因而提高了正极材料的循环稳定性。本发明所涉及的制备工艺具有操作简单、成本低、效率高、易于实现规模化、产业化生产等优点。
本发明公开了一种锂离子电池隔膜,其特征在于,其成分包括高分子量聚烯烃、引发剂、有机物增粘剂和纳米级无机填料,所述的高分子量聚烯烃接枝共聚有亲水基团,所述的亲水基团来自亲水单体,所述分子量聚烯烃和亲水单体的质量比例为5~16。本发明还公开了一种制备上述锂离子电池隔膜的方法,主要步骤包括聚烯烃基质膜的制备、退火、冷拉伸、热拉伸以及热定型处理过程。本发明所涉及的锂离子电池隔膜具有良好的亲水性能、粘结性能和机械强度。
一种锂离子电池用低温电解液,由基体溶剂、低粘度碳酸酯、低粘度和低熔点添加剂、锂盐组成,通过研究电解液的熔点沸点,粘度,介电常数等主要参数,选择合适的溶剂组分以及比例,并选择特殊的低温电解液添加剂,得到具有良好的高、低温充放电性能及低温倍率性能的电解液。本发明,组分配比合理、具有良好的常温、低温充放电性能、常温循环稳定性好、低温倍率性能良好,适于工业化生产,可作为现有锂离子电池低温电解液的更新换代产品。
本发明提供了一种磷酸铁锂/纳米碳复合正极材料的制备方法,其特征在于,包括以下步聚:1)前驱体的预处理:按以下组分和质量百分比含量称量原料:催化剂0.2%~15%、锂盐5%~15%、铁盐40%~60%和磷酸盐25~45%;所述的催化剂为金属FE、CO、NI中的一种或多种;将上述原料加入分散剂后在球磨机中球磨,制得前驱体;2)碳纳米管或碳纤维的生长:3)磷酸铁锂或掺杂磷酸铁锂的制备。本发明解决了碳纳米管在高粘度高固含量磷酸铁锂浆料中的分散难题,并且提供了在制备磷酸铁锂过程中同时生长碳纳米管或碳纤维的方法,提高了磷酸铁锂高功率充放电条件下比容量和循环寿命。
一种多孔球状磷化二铁锂离子电池负极材料及其制备方法,所述多孔球状磷化二铁锂离子电池负极材料为100~800 nm大小均匀的微纳米颗粒,其中的磷化二铁为六方晶相Fe2P,具有多孔球状结构,周围有碳包覆层;本发明采用一次溶剂热法和一次水热法获得前驱体,然后将前驱体在还原气氛下焙烧获得多孔球状磷化二铁锂离子电池负极材料;本发明的多孔球状磷化二铁锂离子电池负极材料,其多孔球状的骨架和碳包覆层都有助于缓解充放电循环过程的体积膨胀,提高材料的导电性;所组装的锂离子电池倍率性能好、循环稳定性好、离子传输效率高;本发明方法操作简单,成本低,可控性强。
本实用新型公开了一种锂电池正极材料生产装置,包括机体和搅拌仓,所述机体内部开设有搅拌仓,且机体顶面中间位置固定有传动电机,所述传动电机输出端位于搅拌仓内部与齿轮组啮合。本实用新型中,该装置通过进料口向锂电池正极材料和胶液加入到机体内部的搅拌仓内,通过传动电机运行带动齿轮组转动,齿轮组转动带动转盘转动,转盘转动带动震动棒转动,从而对搅拌仓内部的锂电池正极材料和胶进行混合,并且马达运行带动螺旋桨转动对进入到集料口中的锂电池正极材料和胶进行混合,同时震动电机运行带动震动棒震动,从而提高搅拌仓内部的锂电池正极材料和胶的混合效率,并其保障不会破坏原有的锂电池正极材料的结构,从而提高工作效率。
本申请涉及基于VPX架构的锂电池模组和VPX机箱,该模组包括锂电池电芯、PCB控制板和VPX模组结构件,锂电池电芯包括多个串并联的锂离子电池。PCB控制板包括:采样电路用于对锂电池电芯进行信号采样并上报单片机及限定锂电池电芯的电压和温度范围。辅助电源电路用于从锂电池电芯接入电源电压并转换为供电电压后输出给单片机和采样电路。驱动放大电路用于对锂电池电芯的电源电压放大并延时启动控制。通信电路分别用于转换传输单片机的通信信号。模组VPX连接器用于将锂电池电芯的电源电压输出及传输单片机的通信信号。单片机用于监控锂电池电芯的工作状态。VPX模组结构件用于封装锂电池电芯和PCB控制板。符合VPX总线规范,通用性较强。
本发明公开了一种基于自适应模型的锂电池荷电状态估计装置及方法,其中方法包括:建立锂电池老化状态映射模型;计算锂电池的端电压、荷电状态以及老化状态这三者间的第一函数关系式;根据第一函数关系式,对锂电池的等效电路进行参数辨识,并拟合计算锂电池的等效电路参数与荷电状态和老化状态这三者间的第二函数关系式;判断待测锂电池的老化状态,再使用第二函数关系式,根据待测锂电池的老化状态得到其等效电路参数与荷电状态间的关系,最终基于待测锂电池的电池荷电状态初值、以及等效电路参数与荷电状态的映射关系,对待测锂电池的荷电状态进行估计。本发明能在不同的电池的老化状态下自动地调节锂电池等效电路模型的参数,提高锂电池荷电状态的估计精度。
本发明属于二次锂离子电池电解液,特别涉及锂离子电池过充或滥用条件下使用的功能性电解液。本发明的锂离子电池多重过充防护功能性电解液,其过充添加剂采用氧化还原对添加剂与电聚合添加剂或气体发生添加剂中一种及一种以上组合;通过不同添加剂的组合不仅可以解决商业化小型锂离子电池3C/10V条件下的过充安全问题,还可以大大提高动力锂离子电池的安全性能。将不同的添加剂按一定的次序和原则进行组合后,可以防止锂离子电池反复局部过充及轻度过充对电池性能的影响和破坏。将不同添加剂之间按不同比例进行优化后,可以降低添加剂对电池其他性能的负面影响。
本发明提供了一种金属锂单质及其制备方法与应用,制备方法包括:1)将净化后的含锂水相用萃取有机相进行萃取,分液得到含锂有机相;2)将步骤1)所得含锂有机相用洗涤液进行洗涤;3)将洗涤后的含锂有机相进行电解得到金属锂单质。本发明从锂资源中提取锂单质,并可将锂单质直接作为锂负极,实现了资源的综合利用和材料短流程制备,无需经过反萃结晶转型等耗能步骤,技术优势明显,节能效果显著。本发明的金属锂负极应用于锂电池上,配合正极材料使用,能保证其负极表面电荷分布均匀,电场稳定,实现金属锂的均匀沉积,缓解了锂枝晶的生长,提高了金属锂电池的稳定性和安全性。
本发明公开了一种单晶锰酸锂材料的制备方法,该方法中采用的掺杂元素M,有两方面作用:一是作为助熔剂,能够在更低温度或保温时间下形成单晶锰酸锂颗粒,甚至形成不同形貌的单晶锰酸锂颗粒;二是掺杂元素可以减少锰酸锂循环过程中的Jahn‑Teller效应、减少锰的溶解、稳定晶格结构从而提高锰酸锂的循环、倍率性能。本发明掺杂四氧化三锰具有较大的八面体一次颗粒团聚而成的二次颗粒,掺杂元素均匀沉淀或吸附在前驱体颗粒的缝隙或表面的特点,可以使锰酸锂性能和形貌的一致性将大大提升,此外可以用更低的温度或保温时间固相合成单晶锰酸锂,甚至形成不同形貌的单晶锰酸锂颗粒,从而得到物理性能、电化学性能兼具的单晶锰酸锂材料。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!