本发明涉及一种高浓度有机废水的厌氧处理工艺,该工艺是在两阶段厌氧处理中的水解酸化阶段与产甲烷阶段之间插入由铁屑和粒状活性炭(或碳粒)的混合物组成的微电解阶段,形成高浓度有机废水的三阶段厌氧处理工艺。三阶段厌氧处理工艺处理高浓度有机废水可提高厌氧产甲烷的生化性,使产甲烷速率增加,从而增大厌氧反应器的容积负荷,大幅度降低出水残留COD的浓度,总COD的去除率大于91%。可广泛应用于轻工、食品、制药和化工等领域的生产过程中产生的大量高浓度有机废水的厌氧处理。
本发明属于废水处理技术领域,具体涉及一种高级氧化和生化耦合处理PAHs和As3+复合污染废水的方法,包括如下步骤:1)收集PAHs和As3+复合污染废水,调节复合污染废水的pH值至4.5‑9.5;2)向调节好pH值的复合污染废水中加入改性铁氧化物活化剂进行氧化处理,反应时间为0‑4h;3)向经氧化处理后的复合污染废水中加入红螺菌菌液,在20‑25℃、黑暗环境下,反应0‑10d。本发明先采用改性铁氧化物活化剂能同时氧化两种污染物,降低复合污染的毒性而其本身不带来二次污染;然后采用红螺菌进行吸附与降解,能够高效净化高浓度有机废水,菌种易获得,培养成本低,培养方法简单,繁殖周期短。
本发明公开了提供一种利用低浓度醋酸废水的方法,它包括以下步骤:(1)过滤处理:先将醋酸废水进行过滤、除杂;(2)中和处理:向过滤后的醋酸废水中加入氢氧化钾发生中和反应,利用搅拌机搅拌使醋酸废水与氢氧化钾充分混合,醋酸与氢氧化钾反应生成醋酸钾,调节醋酸废水的PH至7~9;(3)浓缩处理:将中和后所得醋酸废水通往凉水塔对凉水塔进行补水,随着凉水塔系统的运行,凉水塔的冷却水中醋酸钾的浓度升高;(4)蒸发结晶:待凉水塔的冷却水中醋酸钾达到20g/L~2700g/L后,将所得冷却水进行蒸发结晶得到醋酸钾。本发明可将醋酸废水中的醋酸处理得到醋酸钾回收利用,该方法实用性强,操作安全稳定。
本发明公开了一种含高浓度COD和硫化物废水的处理方法,包括如下步骤:将废水的pH调至6~7后,向废水中加入熟化后的轻烧氧化镁浆液,混合均匀后,再向废水中加入固体氢氧化铁,再次混合均匀,并对废水进行曝气搅拌,在曝气搅拌过程中当废水表层出现泡沫后,去除废水表面的泡沫,曝气搅拌4~6h后即可。本发明提供的含高浓度COD和硫化物废水的处理方法,通过调整废水的pH、加入熟化后的轻烧氧化镁浆液和氢氧化铁相结合,能将废水中的硫化物浓度和COD浓度大大降低,对废水中硫化物的去除率最高可达99.26%,对废水中COD的去除率最高可达81.66%。
本发明提供了一种微波‑紫外耦合催化过硫酸盐处理有机废水的方法,所述方法包括如下步骤;在有机废水中加入过硫酸盐,将含有过硫酸盐的有机废水置于微波发生装置内部的容器中,所述容器中设置紫外光发生装置,开启所述微波发生装置,微波激发紫外光发生装置,在微波与紫外光耦合催化活化过硫酸盐的作用下降解有机废水。本发明采用微波‑紫外光耦合的方法,催化活化过硫酸盐产生硫酸根自由基,形成了以硫酸根自由基为基础的氧化体系,可有效降解废水中的有机污染物,该体系在催化活化过程中没有金属离子溶出,避免了二次污染的产生,而且在酸性、中性和碱性条件下,对废水中的有机物降解效率均较高,实现了在多种pH值情况下废水的稳定处理。
本发明公开了一种高盐高氮废水处理装置,涉及废水处理技术领域。该高盐高氮废水处理装置包括气浮预处理装置和MVR蒸发器,所述MVR蒸发器包括压缩机、分离器、板式换热器和循环泵,所述循环泵连接在所述板式换热器与所述分离器之间,所述气浮预处理装置的出水口通过废水输送管连接所述分离器。本发明首先利用气浮预处理装置对废水进行气浮处理,完成重金属去除和气浮除油,然后利用MVR蒸发器对废水进行蒸发浓缩,一台MVR蒸发器可代替一条传统废水处理生产线,极大缩小了装置的占地空间,而且出水100%达标,本发明在分离器与板式换热器之间设置了循环泵,实现强制循环,具有热传导效率高、易于扩容、浓缩率高、不易结垢等优点。
本发明公开了一种Ce‑OMS‑2催化剂降解有机废水的应用及方法,涉及催化和水处理领域。所述Ce‑OMS‑2催化剂通过活化过硫酸盐对有机废水进行降解,其方法为:在废水溶液中加入过硫酸盐和Ce‑OMS‑2催化剂,搅拌混匀放置,将难降解的有机污染物转化为小分子无污染的物质,达到降解有机废水的目的。本发明所述的Ce‑OMS‑2催化剂在常温常压下能持续且高效地催化活化过硫酸盐降解有机废水,pH适用范围广,降解速率快,反应装置要求较低,催化剂能多次重复使用,在治理难降解有机废水领域具有很大的应用前景。
一种废水资源利用的碳素纤维微藻培育系统,由废水资源输送子系统、藻类培育池、生物质收集子系统、干燥系统、外运、碳纤维水质调节池、CO2充气系统、照明系统、水量水质监控系统、废水资源调控子系统等组成。调节池将废水资源降低有机和氮磷污染物浓度,去除悬浮物、重金属和有毒物,增加水体透明度;培育池用来培育高产油高蛋白着生藻类和微藻的生物质,通过高产油高蛋白藻类进一步降解氮磷和固定CO2。本发明是一种利用废水资源,实现水质净化—藻类培育—温室气体减排的综合产品及设备系统,解决了富营养化水体控制和CO2减排的技术瓶颈,减缓了治理水污染物和温室气体的经济压力,充分利用废水资源实现环境效益、经济效益和社会效益最大化。
本发明涉及一种降低黄姜皂素废水中氨氮含量的方法。一种降低黄姜皂素废水中氨氮含量的方法,其特征在于包括如下步骤:1)按活性炭∶黄姜皂素废水=(3~4)g∶1L,向黄姜皂素废水中加入活性炭,搅拌脱色;2)用重力沉淀过滤,取上清液,除去活性炭;3)用钙或钠的碱性化合物中和上清液至碱性,pH调节为9.0~11.0,得到碱性废水;4)按照Mg2+摩尔浓度∶PO43-摩尔浓度∶碱性废水中的NH4+摩尔浓度的比例为(1~1.1)∶(1~1.2)∶1,向步骤3)得到的碱性废水中投加镁盐、磷酸盐,混合均匀,反应2~3h;5)将步骤4)处理后的废水过滤,使得固液分离。本发明能有效地去除硫酸法黄姜皂素废水中的氨氮,氨氮去除率能达到45%~70%。
本发明涉及胶磷矿选矿领域,更具体的说,是硅钙质胶磷矿正反浮选废水的回用处理工艺,其特征在于在正浮选作业添加捕收剂之前,向回用的废水中加入NAOH溶液,所述的NAOH溶液的量为0.5KG-1KG/吨废水。本发明不仅能定量的对废水进行处理,而且处理过程简单、易行,处理后的废水,回用到浮选作业,不仅可以取得与清水流程相当的浮选指标,而且可以大幅度的降低浮选药剂如碳酸钠等的用量。
本发明公开了一种脱硫废水中重金属的处理方法,属于废水处理技术领域。本发明采用化学沉淀与物理吸附处理相结合的方法去除脱硫废水中的重金属。化学沉淀采用铁氧体沉淀的方法,通过向脱硫浆液中加入铁盐和亚铁盐,控制工艺条件,使废水中各种金属离子如Cd、Pb、Hg、Cu、Zn、Cr、Ni形成不溶性的复合铁氧体,经一段时间陈化后再采用固液分离手段,达到去除重金属离子的目的;再通过天然吸附剂吸附脱硫废水中残余的重金属,从而实现脱硫废水中重金属离子的达标排放。本方法工艺过程简单,沉渣稳定性好,对重金属的去除效率高,有效解决了重金属的二次污染问题,具有很好的环境效益。
本发明提供了一种倒角及机械加工混合废水集成式处理装置,包括机体,所述机体上表面的一侧固定连接有进水管,所述机体上表面的另一侧固定安装有混凝药剂加入口,所述机体一侧的底端固定安装有排水管。该倒角及机械加工混合废水集成式处理装置,通过吸油浮块受到浮力浮在废水上表面,且在皮带的带动下不断移动,继而使得吸油设备在废水中不断周而复始的移动,使得能够使吸油设备对吸油池中任一位置均具有较强的吸收效果,提高不溶性浮油类物质吸收速度,增加不溶性浮油类物质的收集效率;同时通过吸油装置的不断移动和爆气,增强对废水的搅拌效果,避免浮油的吸收受到影响。
本发明公开了一种氧转移率高的印染废水处理用智慧曝气系统,具体涉及废水处理技术领域。本发明通过采用标注模块、分配模块和处理模块,使得该曝气系统通过对废水流量进行统计,同时对多次废水定量的处理效果进行对比分析,得到本次废水处理的实际数据,并将其存储在数据库中,在得到最为节省以及最为效果最好的处理数据后将其进行标注,并存储至实际处理模块内,使得该曝气系统可以根据多次处理废水以及网上收集的废水处理数据进行实时更新,从而保障在多次处理废水的过程中可以选择出最为节省以及效果最佳的曝气数据并进行采用,从而节省了该曝气系统的能耗,保障了该曝气系统对废水处理效果的同时,提高了该曝气系统的智能处理效果。
本发明涉及一种废水的高效处理工艺及装置,包括:A)待处理的废水经过废水管网收集后,经过格栅截留,去除待处理的废水中粒径较大的颗粒物和悬浮物;B)进入集水池汇集、储存、均衡废水的水质水量以及调节水质pH;C)进入水解酸化池发生水解酸化;D)进入EGSB厌氧反应器快速降低废水中COD等污染物的含量;E)进入调节池,对废水进入SBR反应器水量进行调节;F)泵入SBR反应器进一步去除废水中的COD、氨氮、总氮以及总磷等污染物;G)经过生物塘自然净化。本发明所提供的废水的高效处理工艺,具有工艺流程简单、投资省、处理效果好、运行稳定、费用低廉、操作简便等优点。
本发明提供了一种港口洗舱综合废水的分质处理系统及处理方法,该系统包括检测分质机构、废水预处理单元、综合废水调节池、生化处理单元和臭氧反应塔;废水预处理单元包括酸碱中和处理机构、清洗废水处理机构、苯废水处理机构及余类化学品处理机构,所述酸碱中和处理机构、清洗废水处理机构、苯废水处理机构及余类化学品处理机构的进水口均与检测分质机构出料口连接,其出水口均与综合废水调节池进水口连接,综合废水调节池出水口与生化处理单元进水口连接,生化处理单元出水口与臭氧反应塔进料口连接。该发明对含不同有机化学品的综合废水进行分类,根据各类废水特点,采用不同工艺分质进行处理,在保证出水达标情况下尽可能的降低运行成本。
本发明公开了一种催化过碳酸盐降解废水中有机污染物的方法,所述方法包括:在废水中加入质子化处理的g‑C3N4催化剂,在无光环境下搅拌吸附形成混合物;向所述混合物中加入过碳酸盐,构成反应体系;将所述反应体系置于可见光的照射范围内,g‑C3N4催化活化所述过碳酸盐降解废水中有机污染物;所述g‑C3N4催化剂的质子化处理包括:在块状g‑C3N4中加入浓硫酸混合,搅拌,超声,得到混合物;将所述混合物与水混合搅拌,获得乳白色悬浮液,将所述乳白色悬浮液离心、洗涤及干燥,得到酸化后的g‑C3N4;将所述酸化后的g‑C3N4在50‑75℃热回流4‑8h,抽滤、洗涤并干燥得质子化的g‑C3N4。本发明方法降解废水中有机污染物的效果显著,降解率高且稳定。
本实用新型涉及一种可防止杂质堵塞的废水自动化检测装置,包括检测器和固定筒所述固定筒的底部装设有进水管,所述固定筒的外周侧设有储存组件,所述固定筒上端的中心位置处固定穿设有内筒。本实用新型涉及废水自动化检测装置的技术领域。本实用新型在使用装置时,将固定筒装设于废水箱内,并通过进水管将废水箱内的水抽入固定筒内通过过滤组件进行过滤,过滤完成的废水进入内筒中,并由连接管将内筒中过滤完成的废水抽入检测器中进行废水检测,而过滤出的废料杂质由储存组件进行储存,使得废水中不会含有杂物将检测装置的进水口堵住,提升了废水检测装置的检测效率。
本实用新型涉及一种含酚氰废水处理系统,包括第一级破氰机构、活性炭吸附机构和第二级破氰机构,第一级破氰机构连接有废水供管,活性炭吸附机构的废水入口与第一级破氰机构的废水出口连通,活性炭吸附机构的废水出口与第二级破氰机构的废水入口连通。采用第一级破氰处理+改性活性炭吸附处理+第二级破氰处理的废水处理工艺,可以协同去除含酚氰废水中的氰化物及酚类污染物,可使出水中的氰化物、挥发酚含量均≤0.5mg/L;采用改性活性炭在第一级破氰废水的碱性环境中对酚类污染物进行吸附处理,可大幅提升其吸附效果,吸附效率较中性环境可提高38~45%,从而提高对含酚氰废水的处理效果。
本发明公开了一种酮连氮法合成水合肼废水处理方法,包括以下步骤:步骤一:对五效蒸发器装置出水冷凝水罐中的冷凝液废水进行收集;步骤二:将冷凝液废水通入臭氧氧化塔;步骤三:经臭氧氧化塔处理后的废水处理液进入水解酸化池;步骤四:经水解酸化池处理后的废水处理液进入A/O池;步骤五:经A/O池处理后的废水处理液进入沉淀池,进行泥水分离;有效降低废水中的总氮、氨氮浓度,解除废水中肼类物质的毒性作用,有效发挥水解酸化作用,能够将废水中的难降解的大分子物质转化为小分子,有效将污水中的有机物降解成CO2和H2O,同步将废水中的氨氮转化为硝态氮,A/O池COD去除率可达到80%以上。
本发明涉及一种对含铬废水进行综合处理, 从中 回收铬黄并除去水中金属离子的方法, 该方法通过对不同浓度含Cr6+的废水加入含适量Pb2+的溶液, 使Cr6+与Pb2+生成PbCrO4饱和沉淀, 并使废水中Cr6+的浓度降至0.5mg/l以下; 然后对废水中沉淀的PbCrO4进行固液分离, 分离出的固体物经加温烘烤、冷却粉碎, 得到铬黄粉; 再在分离后的含Pb2+过剩的废水中加入一定量的活性炭氟磷灰石, 将吸附了Cr6+和Pb2+等金属离子的碳氟磷灰石与废水分离, 即可使废水中的Cr6+、Pb2的+浓度达到综合排放标准。本发明通过对含Cr6+废水的处理, 回收我国紧缺的铬资源, 同时利用廉价的矿物环境材料碳氟磷灰石去除废水中的铅离子, 有效避免了在回收废水中铬的过程中对水的二次污染。
本发明涉及一种高氨氮废水处理工艺,该方法依次包括以下步骤:高氨氮废水自流入调节池,在调节池内对废水进行水量、水质的调节,然后用泵提升至PH调整池1中将废水PH提高到10左右;将废水泵入两级氨氮吹脱塔,利用空气将废水中的高浓度氨氮吹脱到较低浓度,吹脱出的氨氮采用稀硫酸吸收;吹脱后的废水自流入生化池,进一步降解;生化降解系统采用两段A2/O生化处理工艺;废水在两段A2/O生化处理池中经过充分的硝化反硝化反应。本发明与现有技术相比,具有以下优点:1、采用本工艺处理高氨氮废水能稳定达到排放标准。2、可以灵活调整物化生化的氨氮去除效率,在最优成本条件下达标排放。3、可以生产成肥料变废为宝进行综合利用。
本发明涉及硅钢氧化镁废水的资源化处理方法,收集1#刷洗段氧化镁废水于废水槽中,经高速离心处理后清液流至中间水槽,氧化镁固体由排泥管排出,再经多介质过滤器,多介质过滤器出水回用至2#刷洗段,2#刷洗段刷洗后废水再逆流至1#刷洗段,如此循环。有益效果为:对刷洗后废水采用高速离心+多介质过滤的组合处理方法,再生水质好,避免了刷洗段喷管堵塞、结垢等问题,不影响工艺刷洗质量和机组作业率;采用高速离心+多介质过滤的组合处理方法,处理后废水全部回用,系统外排废水量减低为零;且由于工艺路线较短,水力停留时间也较短,在回收废水的同时,也回收废水携带热量,大幅度减少产线蒸汽及新水消耗,具有优越的节能减排效果。
一种超高回收率废水处理工艺及其浓水高温反渗透处理设备。该工艺针对经过预处理达到反渗透运行要求的废水,根据其总溶解固体浓度TDS的不同数值分阶段处理,包括依次进行的原水反渗透RO、浓水反渗透CRO和高温反渗透HTRO工艺。其浓水高温反渗透处理设备主要由浓水箱、表面换热器、精密过滤器、高温反渗透膜装置、能量回收装置、超浓废水箱和净水箱组成。废水依次经过三次反渗透,不仅能大幅提高净水的回收率,而且能有效降低投资和运行成本,还可确保系统运行稳定和安全。试验表明:本发明可以将最终分离的浓水重量缩减到废水总重量的2~5%,从而大幅节省后续废水零排放处理系统的投资和运行成本;同时获得占废水总重量95~98%的净水,实现废水的良性循环利用。
本发明提供一种脱硫废水浓缩装置,包括浓缩塔,所述浓缩塔具有脱硫废水进口与浓缩液出口,所述浓缩塔具有供脱硫废水存放的浓缩区,所述浓缩液出口位于所述浓缩区底部,所述浓缩塔上还设置有高温进气口与低温出气口,所述高温进气口靠近且高于所述浓缩液出口,所述低温出气口与所述脱硫废水进口均位于所述浓缩区上方,且于所述浓缩区设置有气泡发生器,所述气泡发生器与所述高温进气口连通。本发明中,高温烟气以气泡的形式在浓缩区内与脱硫废水直接换热,进而达到浓缩脱硫废水的目的,设备没有中间介质换热问题,而且避免了浓缩过程中脱硫废水结垢的问题。
本发明涉及一种利用空气气提来实现高盐废水浓缩结晶的系统及方法,所述系统包括第一换热器、第二换热器、蒸发塔及冷却塔,第一换热器经第二换热器连接到蒸发塔,第一换热器的入口连接废水进管,蒸发塔的底部经管道连接鼓风机,蒸发塔底部排出的高盐废水经管道连接到结晶器或废水进管,蒸发塔顶部经管道连接到冷却塔底部,冷却塔底部经泵连通到第一换热器的入口,第一换热器的出口经管道连通到第三换热器,第三换热器的出口经管道分别连通到冷却塔的顶部、淡水回收管。本发明提出的一种利用空气气提来实现高盐废水浓缩结晶的系统及方法,利用空气气提及低品位热源,实现高盐废水的蒸发浓缩结晶,大幅度降低高盐废水环保装置的投资和运行费用。
本发明涉及一种废水处理方法及其电桥反应器,其特征在于:在电化学反应器的阴极和阳极之间中装上不导电的桥,桥上设置散堆的填充物,然后将被处理的废水溶液放入电化学反应器进行处理,这些填充物与被处理的废水构成微电池;所述的填充物是两性金属、焦炭、活性炭、石墨或竹炭。本发明的桥、填充物和溶液构成了电桥,电桥再与电极构成“电桥反应器”。本发明对油田注聚污水进行破乳、以及破乳后的废水进行降低COD、除杂质等处理,充分利用了电极的氧化、还原性作用分解污染物,阳极溶出离子所生成的胶状物质,电中和胶粒表面的负电荷,压缩双电层,减小ζ电位从而实现胶体破乳和油水快速分离及COD的处理。
本发明公开了一种臭氧催化氧化组合生物滤池深度处理焦化废水工艺,步骤如下:1)将从混沉池出来的焦化废水运送至多介质过滤器中进行过滤处理;2)将过滤后废水输送至臭氧催化氧化反应装置进行催化氧化反应;3)将氧化后的废水输送至中间水池;4)再将废水通过泵输送到生物滤池中过滤;5)生物滤池出来的废水的不同利用。本发明还提供了一种臭氧催化氧化组合生物滤池深度处理焦化废水装置。该装置设计合理,运行成本低廉,解决了焦化废水深度处理及回用中的难题,具有很强的工程应用价值;本发明的工艺解决了焦化废水的高污染环境下的对操作人员不安全因素和危害健康的潜在风险;操作简单,运行成本低,出水水质可以满足不同用水要求。
本发明公开了一种高温烟气蒸发脱硫废水处理系统,包括依次连接的原烟道、电除尘器、除尘后烟道、引风机、脱硫塔和烟囱,所述脱硫塔底部连有废水箱,其特征在于:所述电除尘器包括进口喇叭、气流分布板、外部检修平台和灰斗,所述进口喇叭内横向设有蒸发装置,所述蒸发装置包括顶部开口的壳体,所述壳体沿其长度方向的两端分别设有进料口和出料口,所述进料口和出料口之间设有用于输送脱硫废水的输送装置,所述废水箱与进料口通过废水输送管道相连,所述废水输送管道上设有废水泵。本发明具备脱硫废水排放少、运行控制方便、结构简单、系统能耗低的特点。
本发明公开了一种脱硫废水的零排放工艺,脱硫废水经过废水收集池、快速澄清分离装置、软化装置、固液分离装置、微电解除氯装置和氯气吸收装置的处理,先去除悬浮物、去除废水中镁和硫酸根、微电解除氯根和次氯酸钠产品生产,最后得到脱硫系统石灰石浆液配置用水和次氯酸钠商品;还公开了一种脱硫废水的零排放设备,包括废水收集池、快速澄清分离装置、软化装置、固液分离装置、提升泵、微电解除氯装置、氯气吸收装置;本发明将脱硫废水微电解处理回用至脱硫系统中的石灰石浆液配水以达到废水零排放并将废物资源化,设备投资及能耗非常低其投资与运行成本大大低于其他的零排放工艺及设备。
本发明公开了一种磁固相萃取剂在处理染料废水中的用途,吸附剂以文献报道的方法合成,以纳米Fe3O4、醋酸铜、对苯二甲酸为原料,通过水浴加热回流的方法得到固相萃取剂。将合成的固相萃取剂加入到染料废水中,投加量为1.0g/L,振荡20-40分钟后,染料除去率92-99%。适用于染料废水的快速处理,投加后无需用其他试剂进行调节,方法简单,吸附剂循环使用5次后,吸附率仍可以达到90%-95%。并对0.1mg/L的染料废水进行富集,经合适的解析剂解析后测其吸光度,富集倍数高,检测限达到纳克级别,适用于测定水中的微量的染料污染物便于监测。
中冶有色为您提供最新的湖北武汉有色金属环境保护技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!