本发明属于生物医用材料技术领域,尤其涉及一种nbtatizr双相等原子比高熵合金及其制备方法。
背景技术:
生物医用材料是应用于疾病的诊断、治疗、康复和预防,以及替换生物体组织、器官、增进或恢复其功能的材料。生物材料的特征包括生物功能性和生物相容性。生物医用材料是保障人类健康的必需品,直接关乎人类的健康和生命安全。随着经济的快速发展,生活水平的不断提高,以及人口老龄化、新技术的注入,全球生物医用材料产业发展迅猛,产业规模不断提高。2016年,全球生物医用材料市场规模为1709亿美元,2020年突破3000亿美元,2016-2020年复合增长率约为16%。据此保守估计,至2025年全球生物医用材料产业规模将突破6000亿美元,正成为世界经济的支柱性产业。生物医用材料的发展不仅是社会、经济发展的迫切需求,也对国防事业以及国家安全具有重要意义。
按照材料的组成和结构,生物医用材料可以分为医用金属材料、医用无机非金属材料(生物陶瓷)、医用高分子材料、医用复合材料和生物衍生材料等。生物医用金属材料具有高强韧性、耐疲劳、易加工成形性等优良的综合性能。目前临床上应用的生物医用金属材料主要有不锈钢、钛及钛合金、钴基合金以及生物可降解镁合金。但是这些材料在应用中存在如下缺点:(1)生物相容性差。金属材料中含有的ni、v等对人体有害金属由于点腐蚀造成金属离子释放,引起细胞毒性和过敏,不宜在人体内长期使用;(2)比重大、弹性模量高。与人体自然骨的杨氏模量(10-30gpa)相比,金属材料的弹性模量高约为110-170gpa,远远高于人体自然骨的杨氏模量,植入后容易引起人体骨骼的“应力屏蔽效应(stressshieldingeffect)”,从而诱发植入体周边正常组织脆弱化;(3)植入成本高。传统的金属材料熔点高,加工困难,价格高昂,最终造成植入费用高。因此开发出一种满足力学性能要求、生物相容性良好、优良的抗生理腐蚀性以及易于加工成本低廉的医用金属材料非常必要。
目前钛及钛合金、不锈钢、钴基合金以及生物可降解镁合金等在临床上已取得广泛应用。同时,新型生物金属材料也在不断涌现,例如高熵合金、粉末冶金合金、非晶合金以及低模量钛合金等。其目的是制备出满足力学性能要求,同时又具备良好的生物相容性的植入材料。在众多元素之中,满足生物相容性的元素有ti、zr、hf、nb、ta、cr、mo等,他
声明:
“NbTaTiZr双相等原子比高熵合金及其制备方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)