基于模块化神经网络的城市
固废焚烧过程氮氧化物预测方法属于固废处理领域,尾气排放控制是MSWI过程中面临的主要问题。准确预测NOx浓度对于提高SNCR脱硝效率,降低NOx排放具有重要意义。本发明中,开发了一种基于模块化神经网络的NOx预测方法。首先,采用指数平滑预测方法对时序数据进行分割,将数据划分成具有不同分布特性的子集;其次,针对不同的子集,采用径向基函数建立相应的子网络实现NOx的预测;最后采用基于欧式距离的度量方法衡量测试样本与各个子集的匹配度,从而选择合适的子网络进行测试。基于某MSWI厂实际工业数据验证了所提方法的有效性。
声明:
“基于模块化神经网络的城市固废焚烧过程氮氧化物预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)