本发明公开了一种触变注射成形用镁基复合材料的制备方法及其制得的镁基复合材料,属于高性能金属材料制备领域。制备方法包括以下步骤:第一步制备浆料:将增强体、改性剂、粘合剂加入到溶剂中进行搅拌、分散;第二步包覆镁粒:将制备得的浆料包覆在镁合金粒表面并同时高温干燥。本发明的镁基复合材料的制备方法,具有可添加的增强体种类多、含量高的优点,可实现快速包覆,制得的镁基复合材料中包覆层分布均匀、成膜牢固,能有效与镁合金粒粘结“捆绑”在一起,适合作为触变注射成形生产镁基复合材料的供给原料。
本文披露了用于复合材料与环境隔离的方法,以及隔离的复合材料。本文还披露了用于使复合材料成型的方法,该方法包括使用隔离的复合材料。例如,披露了一种用于复合材料机械热成型以形成成型复合材料的方法。
本发明涉及纳米Cu2O/Ag/TiO2?沸石杂化介孔分子筛复合材料的制备方法,该方法具体包括以下步骤:(1)将沸石前驱体加入到介孔分子筛的碱溶液中,充分混合,于90?150℃下反应1?5小时,制得水凝胶;(2)将纳米Ag和纳米Cu2O和TiO2加入到水凝胶中,混合均匀,制得混合凝胶;(3)将混合凝胶进行晶化处理,待晶化处理结束后,经分离、洗涤、干燥,制得中间体;(4)将中间体进行高温煅烧,即制得所述的纳米Cu2O/Ag/TiO2?沸石杂化介孔分子筛复合材料。与现有技术相比,本发明以硅源和铝源合成的沸石前驱体,通过将其引入介孔分子筛的孔壁,并且添加纳米Ag和纳米Cu2O和TiO2,提高复合材料分离和降解有机污染物的效率,制备过程简单,灵活性高,具有很好的应用前景。
本文公开了纤维增强的复合材料。这些材料可用于机械系统和其他应用的承重组件。本文还公开了制备和使用这种复合材料的方法,包含该复合材料的制品等。例如,本发明的一些实施方案通常涉及包含不连续剂例如纤维或小片的复合材料,其位于例如由多个连续纤维形成的基材内。在一些情况下,不连续剂可以例如通过将磁性颗粒附着到试剂上并使用磁场来操纵试剂而基本上对齐。其他实施例通常涉及用于制造或使用这种复合材料,涉及这种复合材料的套件等的系统和方法。
本发明涉及吸波材料技术领域,具体涉及一种核壳磁性纳米洋葱碳基复合材料及其制备方法和应用。本发明提供了的核壳磁性纳米洋葱碳基复合材料的制备方法,包括以下步骤:在晶须状Ni‑Fe‑Cr合金催化剂的作用下,甲烷进行原位催化裂解反应,得到核壳磁性纳米洋葱碳;将所述核壳磁性纳米洋葱碳和多壁碳纳米管混合,经超声喷雾造粒后,得到核壳磁性纳米洋葱碳基复合材料。本发明制备的复合材料一方面能够充分发挥磁性纳米洋葱碳的磁损耗特性,另一方面又利用多壁碳纳米管的存在提高了复合材料的介电性能,本发明制备得到的复合材料在结构上更有利于入射电磁波的反射损耗,从而有利于电磁波的衰减和吸收。
本发明涉及一种表面增强梯度复合材料铸造设备和方法,属于金属基梯度复合材料制备领域。该铸造设备由熔炼坩埚、电磁感应线圈、电磁分离流道、辅助电磁分离芯棒、冷却装置和牵引机构组成。本发明设备结构简单、操作维修方便、生产效率高、适用范围广,能够批量工业化连续生产表面增强梯度复合材料,增强相在铸坯表层均匀分布、在过渡层逐渐减少、在内部基材区无增强相,该材料表面硬度高、耐腐蚀和耐高温,内部具有优良的导电、导热和强度高、韧性好等特性,增强相与基体匹配度高,本发明的制备方法工艺流程短、生产效率高、材料结构/性能可控制性强。
本发明公开一种BiFeO3‑MoO2复合材料及其制备方法和应用,利用本发明公开方法所制得的BiFeO3‑MoO2复合材料,MoO2的负载量wt%为21%~32%;该复合材料具有较高的比表面积和电导率,较高的比表面积能够产生较多的活性位点以能够使电子或离子较容易转移,应用于超级电容器的阳极材料时能有效生成比电容大、循环性能好、寿命长、污染低的电极材料,这是因为负载在BiFeO3上的MoO2在一定程度上有助于提高电极导电性,提高库仑效率,并最终提高电极的循环性能;本发明的整体制备流程简单,优化了工艺反应条件,大幅简化了合成工艺并缩减了成本,具有较好的应用推广前景。
本发明提供了一种调控(FeCoNiCrAlCu)p/2024A1复合材料界面的方法,属于金属材料冶金及热处理技术领域。本发明将(FeCoNiCrAlCu)p/2024A1复合材料块体母材放入微波烧结炉中,采用微波烧结工艺进行固溶处理与时效处理,通过热处理促进材料界面扩散,调控界面特性,从而调控扩散层的厚度和界面力学性能,提高复合材料的强韧性。
本发明涉及一种以MoO3棒状结构纳米线为固体润滑相的TiAl基自润滑复合材料,由Ti单质、Al单质、Cr单质和B单质及MoO3棒状结构纳米线制备而成,其中Ti与Al粉末的原子比为48 : 47,Cr单质的摩尔数为Ti与Al单质总摩尔数的2‑7%,B单质的摩尔数为Ti与Al单质总摩尔数的3‑8%,Cr单质、B单质总摩尔数为Ti单质、Al单质总摩尔数的5‑10%,MoO3棒状结构纳米线为Ti、Al、Cr和B单质总质量的5‑10%。本发明是采用放电等离子烧结等工艺制备TiAl基自润滑复合材料,制备的复合材料纯度高及组织结构致密、摩擦学性能优异,制备周期短,操作简单且易控制。
本发明公开的一种Cu2ZnSnS4‑FeBiO3复合材料及其制备方法和应用。包括以下步骤:1)将铁源和铋源溶于溶剂中,搅拌混匀,同时滴加酸性添加剂,得到稳定的溶胶,溶胶经过陈化、干燥后形成前驱体,前驱体经过焙烧制得FeBiO3纳米晶;2)将铜源、锌源、锡源和硫源依次溶于溶剂,再加入步骤1)制备得到的FeBiO3,搅拌混匀置入反应釜中进行溶剂热反应,反应完成后,离心,洗涤,干燥,得到Cu2ZnSnS4‑FeBiO3复合材料。本发明制备得到复合材料具有可见光活性能够利用LED灯或太阳光,在60min内即可实现废水中六价铬离子98.2%的还原,其光催化活性优异,可见光利用率高,且稳定性好。
本发明提供CaTiO3@ZnIn2S4纳米复合材料,以中空CaTiO3长方体为基底,将三元硫化物ZnIn2S4纳米片在长方体外层进行均匀包覆。与现有技术相比,本发明提供的CaTiO3@ZnIn2S4纳米复合材料,其所用原料易于购买,资源丰富且价格较低,绿色环保,且制备方法简单,易于操作,便于大规模生产;将本发明制备得到的CaTiO3@ZnIn2S4纳米复合材料作为光催化剂,产氢量得到了明显提高,在6h内光催化产氢量达到125016.4μmol/g,并且在光催化制氢过程中保持良好的循环稳定性。
本发明涉及油气钻井领域,具体涉及超疏水型复合材料和在水基钻井液中作为抑制剂、润滑剂和油气层保护剂的应用。双疏型复合材料的制备方法包括:在碱性条件下,在醇水混合溶剂中,将纳米TiO2和纳米SiO2进行第一混合,得到纳米TiO2和纳米SiO2的分散液;而后将含氟硅偶联剂引入至所述纳米TiO2和纳米SiO2的分散液中并进行第二混合。本发明提供的该双疏型复合材料能够在水基钻井液中使用,具有强抑制水化膨胀分散的作用,且毒性低、配伍性好,能够有效解决井壁失稳、阻卡卡钻、储层损害等问题,对进一步推动超深井、水平井、大位移井等高难度井在含泥页岩地层中的开发应用具有长远的实用价值与经济效益。 1
本发明提供了一种层状MoS2-TiO2纳米复合材料的制备方法,将二硫化钼粉末加入分层溶液中进行分层反应,反应完成后过滤,烘干,得到分层二硫化钼粉末;将钛酸四丁酯、二乙醇胺与无水乙醇混合后加入蒸馏水中,进行螯合反应,得到前驱体溶液,前驱体溶液蒸发干燥后得到干凝胶,研磨得到干凝胶粉末;向分层二硫化钼粉末中加入干凝胶粉末和爆炸剂,进行爆炸反应,冷却至室温后取出爆炸反应产物,即得到层状MoS2-TiO2纳米复合材料。本发明利用芳香族硫醚的亲硫特性,降低二硫化钼原料粉末的层间范德华力,结合爆炸冲击对其进行分层剥离。本发明通过溶胶-凝胶法与爆炸高温冲击结合,仅用一步即完成了TiO2的迅速还原和MoS2的剥离,成功制备了层状MoS2-TiO2纳米复合材料。
一种立体织物增强碳化硅-金刚石复合材料的制备方法,其特征在于,将碳纤维或碳化硅纤维束进行高温预处理后编织成中空中心轴堆成的立体织物。金刚石粉末、无水乙醇、金属盐化物混合配制成电泳悬浮液,金刚石溶度为10~20g/L。将立体织物放入电泳悬浮液中,电泳沉积金刚石粉末,然后化学气相渗透(CVI)热解碳,对CVI后的立体织物放入浸渍罐中进行硅溶胶真空浸渍处理后,升温至1400~1600℃,惰性气氛下纳米氧化硅粉末与热解碳氧化还原反应,重复电泳沉积、CVI、真空浸渍,高温氧化还原反应3~5次,最终得到立体织物增强碳化硅-金刚石复合材料。该法制备得到复合材料致密度高,力学性能得到明显提高。
本发明提供了一种MoS2/WS2纳米层状复合材料的制备方法,步骤如下:将钼酸铵加入到去离子水中,配成钼酸铵水溶液;向钼酸铵水溶液中加入盐酸羟胺和十六烷基三甲基溴化铵,溶解,得到混合液A;在密封环境和搅拌的条件下,向混合液A中加入六氯化钨,得到混合液B;向混合液B中逐滴加入硫代乙酰胺溶液,连续搅拌,得到混合液C;将混合液C转移至聚四氟乙烯为内衬的不锈钢反应釜中进行水热反应,反应完毕后,自然冷却至室温,离心收集产物,洗涤,干燥,得到MoS2/WS2纳米层状复合材料。本方法反应条件温和,工艺简单,产率高且重现性好,所制备的MoS2/WS2纳米层状复合材料可应用于润滑油添加剂、光电材料、储氢、光催化等领域。
本发明提供了一种通过加工树脂组合物获得的复合材料,所述树脂组合物包括热塑性树脂、多壁碳纳米管和增强成分。所述多壁碳纳米管的平均直径为10nm或大于10nm;组成所述多壁碳纳米管的壁的石墨烯层数为10层或大于10层;所述多壁碳纳米管的Id/Ig为1或小于1;并且留在所述复合材料中的所述碳纳米管的余量长度的比率为40%或大于40%。包括所述热塑性树脂的所述复合材料在电导率不降低的情况下具有提高的机械性能,并且因此能够制造成各种模制品。
一种SiC-Mo4.8Si3C0.6复合材料的制备方法,将仲钼酸铵加入到葡萄糖溶液中,充分溶解后,加入硅溶胶并混合均匀,于160~200℃进行水热反应12~36h,然后于1350~1550℃氩气气氛保护下进行热处理2~4h,最终得到SiC-Mo4.8Si3C0.6复合材料。本发明制备的复合材料密度适中,颗粒尺寸小,具有良好的高温抗氧化性能。本发明原料容易获得,制备工艺简单,操作简便,成本低,环境友好无污染。
本发明公开了一种加入银纳米线的导电复合材料及其制备方法。各组分的配比按质量份计算为:银粉20~41份;银纳米线1~8份;丙烯酸树脂100份。取丙烯酸树脂作为高分子基体,同时加入丙酮,机械搅拌;取银粉和银纳米线,将其混合,然后加入丙酮,机械搅拌结合超声分散,使其混合;将上述两液混合,机械搅拌结合超声分散,使粒子在树脂中分散;在40~70℃,通风环境中固化。本发明制备的复合材料,可以实现在一定范围内,在同样的银填料总量时有更好的导电性,或在导电性能相近情况下,银纳米线和银粉共同构成的体系所需要的银量较低。这种具有好的导电性能的导电复合材料可用于电子封装连接等领域,以满足军用和民用的需要。
本发明提供了一种热敏电阻复合材料,该复合材料包括高分子聚合物、填充聚合物、导电填料;所述填充聚合物是非极性聚合物,且其结晶度为90-100%,熔点为250-400℃,平均粒径为1-5μm。本发明还提供了该复合材料的制备方法及含有该复合材料的热敏电阻。用本发明的复合材料制备的复合材料制备的电阻具有高的耐电压耐电流性能。
用于陶瓷滑动轴承的复合材料及其制备方法,它涉及一种复合材料及其制备方法。解决目前陶瓷滑动轴承不具备耐腐蚀、耐磨损,摩擦系数小且耐热冲击特点的问题。方案一:所述复合材料按体积份数由5-45份的石墨和55-95份的碳化硅为组成;方案二:取石墨粉、活性炭粉和碳化硅粉在球磨罐中进行均匀混合;在钢模中压制成轴承的粉末压坯;将粉末压坯放在熔融的硅液体中浸润;将粉末压坯置于烧结炉中烧结;方案三与方案二的不同之处为取石墨粉、活性炭粉和硅粉在球磨罐中进行均匀混合。本发明用于制造滑动轴承。
一种原位自生TiC/Al复合材料超细晶粒细化剂及其制备方法,属于金属材料领域,本发明晶粒细化剂的组分及其重量百分比为Ti 0.1~36%,C 0.02~8%,其余为Al,其中Ti∶C为4.5∶1;用助熔剂覆盖铝熔体进行熔炼,用助熔剂助熔晶粒细化剂预制块,包括以下步骤:(1)利用高温真空反应烧结法合成超细晶粒细化剂预制块;(2)对上述预制块保温烘干;(3)加入铝锭全部熔化后即加入氯盐、氟盐助熔剂覆盖熔体;(4)助熔剂熔化后加入经烘干的复合材料超细晶粒细化剂预制块;(5)预制块全部熔化后进行搅拌;(6)熔体静置后浇入锭模,即获得原位自生TiC/Al复合材料超细晶粒细化剂。该工艺合成的超细晶粒细化剂细化效果明显、细化衰退时间长,更易于工业化生产。
本发明涉及一种复合材料的生产方法,特别是一种利用高分子废弃物生产复合材料的方法。提供一种利用高分子废弃物,如废聚乙烯、废聚丙烯、废橡胶、木粉、稻壳粉,分别经化学、物理方法进行改性,再将改性后的材料用超细磨进行超细化处理,使其细度达到100目以上至接近纳米材料,再根据制品的需要,按不同配比加入助剂等物质,再生一种新的复合材料。用这种材料生产的制品可以用于汽车保险杆、汽车底盘、皮带输送机托辊、建筑业用的模板等构件上。
本发明属于金属陶瓷复合材料的制造领域, 特 别适用于原位近终形陶瓷/Ni3Al复合材料的制 备方法。本发明方法是取一定粒度的陶瓷粉、镍合金粉混胶浇 注成型, 经脱粘结剂后在真空炉中烧结, 再于液态铝中 进行渗铝反应, 最后进行高温均匀化处理便可得到韧性好 强度高的陶瓷/Ni3Al复合材料。该方法与 现有技术相比较, 具有制造工艺简便, 操作方便, 尤其对大 尺寸和形状复杂的构件近终成型更明显优越。
本发明公开了一种 TiB2-FeNiCr复合材料及其制 备方法和铝热-快速凝固装置,该复合材料由金属合金基体材 料和硼化物增强体组成,所述金属合金基体材料FeNiCr的重 量百分比为70~97,所述硼化物增强体材料 TiB2的重量百 分比为3~30;其金属合金基体材料中铁Fe的重量百分比为 20~60、镍Ni的重量百分比为20~50和铬Cr的重量百分比 为10~30。其装置由水冷铜模、电源装置和反应容器组成,反 应容器安装在水冷铜模上,钨丝与电源装置正负极连接,保温 材料填充在石墨管与壳体之间,石墨管的另一端端口设有铝 箔,水冷铜模的冷却水循环腔是S形,成型腔是漏斗形。本发 明是将铝热法与快速凝固工艺结合起来,把铝热反应得到的熔 体产物直接注入到铜模中,利用铜金属导热系数高的特性来实 现熔体产物的快速冷却、凝固,从而得到组织均匀、晶粒细小 的TiB2增强金属复合材料。
本发明提供了一种以水玻璃为原料单次溶剂交换快速制备二氧化硅气凝胶复合材料的方法,包括步骤:向水玻璃溶液中加入去离子水搅拌均匀,得到前驱体溶液,之后加入红外遮光剂,超声分散均匀,再加入酸性溶液调节体系的pH,得到混合溶液;将混合溶液加入盛有纤维毡的容器中,静置待其形成凝胶,得到凝胶复合材料;将凝胶复合材料加入醇类溶剂/非极性溶剂/甲硅烷基化改性剂的混合液中进行表面改性处理,之后经常压干燥,即得。本发明是以廉价水玻璃为硅源,通过一步酸催化,经一次溶剂交换完成非极性溶剂与孔隙中水的交换与甲硅烷基化改性,经常压干燥得到气凝胶复合材料。所得气凝胶材料具有低密度,高孔隙率,高比表面积,低导热系数的特点。
本申请涉及锂离子电池技术领域,具体公开了一种高振实密度硅碳复合材料制备方法及硅碳复合材料和应用,制备方法包括如下步骤:S1、准备预混料;S2、预处理:在惰性气体保护下,于温度120‑240℃、碾压压力2‑10T下,对预混料进行热碾压处理,之后对预混料进行降温处理,且降温至30‑55℃,再次升温热碾压且降温重复处理,重复次数至少1次,得到预处理混料;S3、碳化;S4、混料:将碳包覆硅材料、石墨混合均匀,得到硅碳复合材料。该硅碳复合材料具有低粒度、高振实密度、高首次充电比容量、高首次充电效率的优点,表现出优良的综合性能,增强其于锂离子电池中的使用效果,满足市场需求。
本发明公开了一种玻碳纤维复合材料铺层方法及其复合材料,包括以下步骤:S1、对模具内表面喷涂胶衣保护层;S2、将玻璃纤维层和碳纤维层按铺层方案逐层放置在模具内并压实;S3、将背模密封覆盖在模具上;S4、抽真空,并向模具内注入基体材料;S5、基体材料注入完成后,关闭真空系统,取下背模,测量复合材料铺层背部硬度,达到要求后,准备进行后固化工序;S6、将模具转移至大功率自动对流后固化窑内,进行后固化;S7、完成后固化后,室温下静置脱模,对玻碳纤维复合材料铺层进行切割毛边、钻孔后,打磨并抛光;该方法能够提高固化速度,使应力得到快速释放,降低树脂与纤维内部应力的集中,保证产品的均匀性、以及整体厚度和强度的要求。
本发明公开了一种硅‑天然石墨复合材料及应用和微量无害杂质催化制备硅‑天然石墨复合材料的方法。硅‑天然石墨复合材料的制备方法是将含有微量无害杂质天然石墨经过干燥、球磨及过筛,得到天然石墨颗粒;在天然石墨颗粒表面通过化学气相沉硅纳米纤维和无定型碳,即得,该方法具有成本低,工艺简单,对设备要求低等优点,该方法制备的硅‑天然石墨复合材料中硅和天然石墨结合紧密、机械强度高,结构稳定,电化学活性高,可以用于制备高循环稳定的锂离子电池。
本发明公开了一种AlOOH/MnO2@硅藻土复合材料的制备方法,包括:将AlCl3加入到硅藻土悬浮液中,调节pH值后加入十二烷基苯磺酸钠;随后缓慢滴加由过硫酸铵和高锰酸钾溶于去离子水中制得的铵锰复合溶液,搅拌后加入尿素制得硅藻土复合溶液;将硅藻土复合溶液发生水热反应,即得。本发明所提供的在硅藻土藻盘上沉积纳米花、线状的AlOOH/MnO2@硅藻土复合材料,提高了硅藻土基体对重金属砷离子的吸附敏感性,在增加比表面积的同时,对砷离子的吸附容量显著增加;该方法设计巧妙合理,制备过程科学简单,工艺过程可控,对生产设备的要求较低,经济效益显著,具有重大的理论和实际意义。
本发明提供了一种金属‑有机骨架化合物@介孔材料复合材料及其制备方法与应用。本发明在介孔材料的孔道内分布有金属‑有机骨架化合物,能够充分利用金属‑有机骨架化合物对CO2的吸附性能,介孔材料发达的网络孔道结构也有助于CO2气体分子的扩散,孔道中分布的金属‑有机骨架化合物能够与CO2气体进行充分的接触,介孔材料还能有效减缓金属‑有机骨架化合物在烟道气环境下的分解变性,延长吸附材料的使用寿命,使本发明金属‑有机骨架化合物@介孔材料复合材料具有优异的耐高温性能和耐水性能。本发明制备方法工艺简单,适于大规模生产,可用作CO2吸附剂,尤其是用于吸附烟道气中的CO2,能够在烟道气环境下长期稳定使用。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!