一种分布式发电蓄能锂电池,包括外壳以及设置于所述外壳内的锂电池组,设置于所述外壳内的加热器,所述加热器与所述锂电池组相接触;设置于所述外壳内的散热器,所述散热器与所述锂电池组相接触;设置于所述外壳内的温度传感器;设置于所述外壳至少一对相对的侧壁上的散热孔,在外壳上至少一个散热孔位置处设置有风扇。本实用新型在电池组外壳内设置加热体和散热器,通过温度传感器采集外壳内的温度,控制加热体或风扇的开/关,当温度过高或过低时,可在外壳内形成一个相对恒温的环境,使电池组可以正常工作,避免发生自燃或爆炸事故。
本发明提供了一种原位生长磷酸铁锂薄膜的制备方法,包括如下步骤:(1)向磷酸锂中加入柠檬酸溶液,完全溶解后制得磷酸锂的柠檬酸稀释液;(2)将球形磷酸铁锂粉末浸入磷酸锂的柠檬酸稀释液中,搅拌至均匀,(3)接着边搅拌边倒入硫酸亚铁,继续搅拌一段时间;(4)固液分离、洗涤、干燥,得到前驱体;(5)前驱体在惰性气氛条件下进行烧结得到成品。本发明在常压下水相条件下,包覆薄膜后的球形磷酸铁锂晶体表面变得光滑、整体形貌趋于规则球型,压实密度和循环性均得到提升。
本实用新型公开了一种提升锂电池隔膜生产过程萃取工序自动化的装置,该装置包括萃取箱、上辊和下辊,所述萃取箱内装有萃取液,锂电池隔膜从萃取液内穿过,所述上辊位于萃取液液面上方,所述下辊位于萃取液液面下面,上辊和下辊均单独配备有驱动电机,锂电池隔膜从萃取箱一端进入另一端离开,在萃取箱中来回穿梭缠绕在上辊和下辊表面,所述驱动电机驱动每一根上辊和下辊独立运转并带动锂电池隔膜行走。本实用新型的上下辊均为主动辊,所有辊的拖曳速比一致,不存在各辊间存在拖拽速比差异的情况,从而降低了断膜风险,并且隔膜匀速通过萃取工序,避免膜面亮条纹、划伤等缺陷,提高了A品率,同时也为后期的产线提速,提高产能打下了坚实基础。
本发明提供了一种镱铝共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法,属于锂离子固体电解质制造领域。本发明采用固相反应法合成了新型石榴石结构的锂离子导体Li7La3‑xYbxZr2O12(x=0.1‑0.4)。本发明的镱铝共掺杂石榴石型立方相LLZO陶瓷最高离子电导率为3.15×10‑4S cm‑1。此外,本发明制备工艺简单,原料成本低廉,循环性能好及循环效率较高。因此采用本发明合成工艺可以大规模生产固体电解质。本发明制备的致密陶瓷固体电解质可能应用于全固态锂离子电池。
本发明涉及一种通过原位合成无机颗粒制备无隔膜锂离子电池的方法。具体地,本发明涉及锂离子电池领域,公开了一种通过原位合成无机颗粒制备无隔膜锂离子电池的方法及由该方法制备的无隔膜的锂离子电池。所述电池包括正极极片和负极极片,其中所述正极极片和所述负极极片中的至少一者的表面设有无机材料膜。该无机材料膜由包括无机材料颗粒、黏结剂、催化剂、溶剂和助剂的涂覆料原位形成。整个工艺流程简化,极大地降低了生产成本,全流程零排放,实现了工艺的环境友好。同时,制造的锂离子电池由于不包含隔膜,不仅能够提高锂离子电池能量密度,而且能够改善锂离子电池稳定性和安全性。
本发明涉及锂电池荷电状态SOC预测技术,具体涉及一种锂电池荷电状态估计方法,包括如下步骤:建立锂电池等效电路模型;对锂电池二阶RC模型中的各参数进行精确辨识;基于电池二阶RC模型,结合SOC的安时积分表达式,建立以SOC、RC支路的电压U1和U2为状态量的电池系统状态空间方程,并进行离散化后获得离散状态方程;基于近似二阶扩展卡尔曼滤波(ASEKF)递推原理和方法估算锂电池SOC。本发明所提供的一种锂电池荷电状态估计方法,依据锂电池放电动态特性对其二阶RC等效电路模型参数进行精确辨识,通过ASEKF实现SOC的估算,相对扩展卡尔曼滤波法(EKF),减小了由于非线性状态方程变换引起的SOC估算误差,以较小的运算量为代价,有效的提高了SOC估算精度。
本发明公开一种人造石墨的制备方法、以及锂离子电池。其中,人造石墨的制备方法包括以下步骤:S10、将原料焦粉末进行石墨化处理,得到中间物;S20、将第二原料与中间物混合均匀,得到复合前驱体;S30、将复合前驱体在保护气的保护下,以900~1400℃进行碳化处理,得到人造石墨;其中,第二原料包括液相包覆剂。通过液相包覆能有效改善人造石墨表面的形貌,降低了比表面积,使副反应的活性位点减少,同时还使锂离子电池产气减少并降低了体积膨胀,提高了锂离子电池的安全性能;此外,先石墨化处理,再进行包覆,使制得的人造石墨的吸液性能较好,从而降低了内阻、改善了低温性能,而内阻降低有利于锂离子的移动,使制得的锂离子电池的快充性能较好。
本实用新型公开了一种溴化锂制冷机发生器,包括装置主体,所述装置主体侧面上端固定连接有溴化锂水溶液进口,所述装置主体的侧面下端溴化锂水溶液进口的正下方固定连接有溴化锂水溶液出口,所述装置主体的上端设置有电机,所述电机的外侧固定连接有固定台,所述电机的下端装置主体的内部设置有转轴,所述转轴的底端固定连接有搅拌叶片,所述转轴的中部外侧环绕设置有加热管,所述装置主体的内部下侧搅拌叶片的下方设置有过滤层。本实用新型所述的一种溴化锂制冷机发生器,通过过滤层可以将溴化锂水溶液中的结晶过滤出来,且可以使结晶随部分溴化锂水溶液进入收集盒内部,将收集盒从固定块中抽出,从而可以将结晶清理出来。
本发明涉及一种三元正极材料NCM原位固相包覆锂离子导体的方法,为解决现有方法生产难问题,是步骤:(1)将烘干后的前驱体NixCoyMn1‑x‑y(OH)2与表面原位形成锂离子导体所需的过量锂源混合,利用球磨机搅拌混合,得到混合均匀的均混料;(2)均混料通过高温固相法进行一次烧结,得到一次烧结产物为锂化合物包覆的正极材料LiNixCoyMn1‑x‑yO2,之后进行过筛得筛下产物;(3)所得产物加入适量的金属氧化物,进行二次烧结,之后进行过筛,得到筛下物为表面原位形成锂离子导体包覆层的正极材料LiNixCoyMn1‑x‑yO2粉料。具有操作简单、高效、环境友好、低成本、易于工业化生产、适用于在三元氧化物正极表面包覆离子导体,且所制备的离子导体包覆层与氧化物包覆层相比离子电导率更高的优点。
本发明公开了一种提升锂电池隔膜生产过程萃取工序自动化的装置,该装置包括萃取箱、上辊和下辊,所述萃取箱内装有萃取液,锂电池隔膜从萃取液内穿过,所述上辊位于萃取液液面上方,所述下辊位于萃取液液面下面,上辊和下辊均单独配备有驱动电机,锂电池隔膜从萃取箱一端进入另一端离开,在萃取箱中来回穿梭缠绕在上辊和下辊表面,所述驱动电机驱动每一根上辊和下辊独立运转并带动锂电池隔膜行走。本发明的上下辊均为主动辊,所有辊的拖曳速比一致,不存在各辊间存在拖拽速比差异的情况,从而降低了断膜风险,并且隔膜匀速通过萃取工序,避免膜面亮条纹、划伤等缺陷,提高了A品率,同时也为后期的产线提速,提高产能打下了坚实基础。
本实用新型属于分级设备领域,尤其是一种磷酸铁锂自动分级设备,针对现有的磷酸铁锂自动分级设备存在筛分后难以便捷的对不同尺寸的磷酸铁锂进行收集的问题,现提出如下方案,其包括震动平台,所述震动平台上设置有震动电机,所述震动平台的顶部对称固定安装有第一固定板和第二固定板,所述第一固定板和第二固定板上均固定开设有多个配合使用的滚轮槽,处于同一平面的两个所述滚轮槽内设置有同一个下料板,本实用新型中,该磷酸铁锂自动分级设备结构简单,使用方便,通过分级的筛分方式,能够快捷的对不同尺寸的磷酸铁锂进行筛分,并进行收集,从而提高了磷酸铁锂筛分的工作效率。
本发明提供了一种新型类石榴石结构的锂离子导体Li7-xLa3Zr2-xSbxO12(0<x≤0.5)晶态陶瓷固体电解质材料及其合成方法,属于锂离子电池领域。本发明采用传统固相反应合成了新型类石榴石结构的锂离子导体。Sb掺杂样品XRD衍射峰表明本发明中Sb掺杂范围内均为晶态立方相的类石榴石结构。锂离子电导率在室温(30℃)最高的达到3.42×10-4S/cm。本发明采用了传统固相法合成制备样品,制备过程简单,烧结时间短。通过高价Sb部分取代Zr增加了锂离子空位,显著提高了离子电导率,并且三氧化二锑比氧化锆廉价,降低了制造成本。因此本发明合成的致密陶瓷固体电解质材料可能应用于锂离子电池。
本发明属于锂离子电池技术领域,刚公开一种锂离子电池及其制备方法;所述制备方法,包括:分别制取正极片和负极片,将所述正极片和负极片用隔膜隔开,通过叠片的方式形成电芯;将氟基低温电解液注入所述电芯中,获得锂离子电池;所述正极片的正极活性物质为三维通道锰基材料。本发明中创新性的提出了一种新的锂离子电池体系;正极片的正极活性物质为三维通道锰基材料,配合对应研发的氟基低温电解液;相互协同作用,能够大大提升锂离子在低温下的脱嵌速度。
本发明提供了一种生产高压实高容量磷酸铁锂的方法,所述方法包括以下步骤:步骤1,将纯水、磷酸铁、锂源、碳源、添加剂按比例混合研磨成粒径为0.8—1.2μm的混合物,得到大颗粒浆料A;步骤2,将大颗粒料浆料A研磨成粒径为0.1‑0.5μm的混合物,得到小颗粒浆料B;步骤3,将小颗粒浆料B经喷雾干燥,得到磷酸铁锂前驱体干燥物C;步骤4,将磷酸铁锂前驱体干燥物C进行热处理后,得到磷酸铁锂烧结物D;步骤5,磷酸铁锂前驱体干燥物C和磷酸铁锂烧结物D混合均匀后置于进行二次热处理及气流分级处理,得到磷酸铁锂成品E,本发明通过在烧结阶段引入混烧,提高了磷酸铁锂成品的压实密度和电化学性能,同时减少烧结后的磁性异物。
本发明提供了一种铝铁共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法,属于锂离子固体电解质制造领域。本发明采用固相反应法合成了新型石榴石结构的锂离子导体Li5.8Al0.4‑xFexLa3Zr2O12(x=0.1‑0.4)。本发明的铝铁共掺杂石榴石型立方相LLZO陶瓷离子电导率为9.64×10‑4S cm‑1。此外,本发明制备工艺简单,原料成本低廉,合成时间短。因此采用本发明合成工艺可以大规模生产固体电解质。本发明制备的致密陶瓷固体电解质可用作锂离子电池、金属锂‑空气、金属锂‑硫电池的固体电解质。
中冶有色为您提供最新的内蒙呼和浩特有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!