本发明提供一种用于复合材料的动态均质化超声全聚焦缺陷成像方法及系统,该方法包括:步骤1:基于递归刚度矩阵法对声波在复合材料层合板周期性铺层中的传播过程进行解析建模;步骤2:通过弗洛凯波理论对复合材料层合板的周期性铺层单元进行动态均质化建模,得出不同铺层方向的复合材料层合板对应的可均质化范围;步骤3:根据均质各向异性材料中波矢的频散效应求出准纵波的能量传播速度;步骤4:利用非均质各向异性复合材料在可动态均质化范围内的能量传播速度进行波达时间修正,从而对各种铺层方向的复合材料层合板进行超声全聚焦缺陷成像检测。本发明通过解决复合材料铺层结构和激励信号中心频率引起的不同传播方向的声速差异导致的时间补偿问题,实现非均质各向异性复合材料的可视化成像。
本发明提供了一种PBT/PCT复合材料及其制备方法和用途。所述PBT/PCT复合材料包括如下重量份数的组分:PBT 30‑45份、PCT 4‑20份、(乙烯基POSS,MAH)‑g‑PP 5‑10份和增强材料25‑40份。所述PBT/PCT复合材料是通过先采用乙烯基POSS与MAH‑g‑PP反应生成(乙烯基POSS,MAH)‑g‑PP,再与PBT、PCT及增强材料熔融共混的方法制备得到。本发明提供的PBT/PCT复合材料同时具有较高的耐热性和机械强度,较低的介电常数和介电损耗,可用作电子产品的纳米注塑材料。
本发明属于陶瓷材料技术领域,公开了一种具有高强度的高熵陶瓷复合材料及其制备方法和应用。该陶瓷复合材料是在金属氧化物和无定型硼粉中加入溶剂混合干燥后,在真空条件下,制成高熵固溶体粉末,先升温至1000~1200℃,再升温至1600~1800℃,加入WC后得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2‑xmol%WC高熵复合材料粉末,采用放电等离子升温至1000~1400℃时充入保护气,后升温至1800~2200℃煅烧制得,其中0≤x≤30。本发明陶瓷的相对密度>94%,硬度为20~45GPa,陶瓷复合材料的弯曲强度和在1200~1800℃的高温强度均为1000~1600MPa。
本发明提供了一种废旧印刷电路板非金属粉增强的废旧ABS基复合材料,包括废旧印刷电路板非金属粉、废旧ABS和尼龙6,废旧印刷电路板非金属粉的重量为废旧印刷电路板非金属粉、废旧ABS和尼龙6总重量的10%-30%,尼龙6的重量为ABS和尼龙6总重量的10%-40%。该复合材料的力学性能较好。本发明还提供了该复合材料的制备方法,包括以下步骤:(1)取废旧印刷电路板,将所述印刷电路板进行破碎、分选,得到废旧印刷电路板非金属粉;(2)取废旧ABS颗粒和PA6颗粒,将废旧印刷电路板非金属粉、废旧ABS颗粒和PA6颗粒在加热条件下混合均匀后,挤出成型,加热的温度为180-250℃,制得废旧印刷电路板非金属粉增强的废旧ABS基复合材料。该制备方法工艺简单,操作方便。
本发明公开了低压原位合成防锈金属陶瓷复合材料及其制备方法,金属陶瓷复合材料由质量百分比为35~70%的陶瓷和粘接剂合金组成,其中所述粘接剂合金组成为锰、硅、铬、镍、磷、硫、胶体石墨粉、钼、稀土元素以及铁。本发明提供的低压原位合成防锈金属陶瓷复合材料具有较高的力学性能,同时粘结钢基体可以有效的改善复合材料在大气、水及一些水溶液等环境中的防锈性能。
本申请公开了一种富锂含镍三元复合材料及其制备方法和应用。本申请富锂含镍三元复合材料包括核体和包覆于核体的包覆层,核体的材料包括aLiNiOx·bLi2O,包覆层包括含锂的金属氧化物层,金属氧化物层所含的金属元素包括三元活性材料所含的金属元素,且金属元素中的金属元素不含镍;其中,所述aLiNiOx·bLi2O中的1≤a/b≤5,0.5≤x≤5.5。本申请富锂含镍三元复合材料在具有高的补锂效果的基础上,表面Ni2+含量较低和残锂少,活性高,赋予富锂含镍三元复合材料高的能量密度和循环性能。其制备方法能够保证制备的富锂含镍三元复合材料结构和电化学性能稳定,而且效率高,节约生产成本。
本发明公开了一种电感用高密度新型磁性复合材料,以重量百分比计,由高温树脂胶6~12wt%和磁性粉体88~94wt%组成;通过本发明的磁性复合材料制备一体电感磁芯生产简单,无需大型压机,节约了设备投入;减少了压制过程中的模具损耗,降低了生产成本;操作简单,可生产复杂形状的磁体,并且可生产超大磁体;形成闭合磁路,EMI效果好;本发明的磁性复合材料通过特殊高温树脂胶的作用,使固化后的磁体密度高,密度可保证在5.5~6.2g/cm3,制备电感器的感量值高,初始磁导率可达14μ以上;本发明的磁性复合材料能够承受较高温度,可在180℃环境下工作;本发明的磁性复合材料利用率高,废料少,粉尘少,符合环保要求。
本发明公开了一种高性能抗静电的PPS复合材料及其制备方法和应用。本发明的高性能抗静电的PPS复合材料,包括如下重量份的组分:聚合物基体80~90份,抗静电剂10~20份,其他助剂0~5份,所述聚合物基体为聚苯硫醚(PPS)和热致液晶聚合物(TLCP)的化合物,且PPS与TLCP的重量比为(1~4)∶1。本发明通过PPS、TLCP与抗静电剂的互相配合,制得了表面电阻率极低、抗静电指数稳定,且力学性能良好的PPS复合材料。由于PPS与TLCP的粘度差异以及含量的不同,PPS复合材料在加工过程中形成皮层和芯层结构,抗静电剂富集并均匀分散于“皮层”的TLCP中,从而使得PPS复合材料力学性能良好,表面电阻率较低,可达到105~107Ω,且抗静电指数稳定。
本发明提供了一种复合材料及其制备方法和应用。本发明的复合材料,负极材料在充放电过程中由于材料体积膨胀,SEI的不断生长,会导致容量下降,循环稳定性不好。针对该问题,本发明设计了一种具有独特的珊瑚状结构的复合材料,该复合材料的比表面积大,复合材料中,金属氧化物通过转换反应提供容量,金属单质不会在充放电过程中发生转换反应,因此不会产生体积效应,在充放电过程中能保持原有的结构,从而缓冲了氧化物的体积膨胀。金属单质如Co单质不仅能够缓冲金属氧化物如CoO的体积效应,还能充当催化剂,催化SEI的生成与分解,从而使电池具有稳定的循环性能和较高的容量保持率。
本发明提供一种低烟阻燃的环氧树脂复合材料及其制备方法,通过添加硅烷改性腰果酚基聚氨酯树脂和环氧改性聚硼硅氧烷树脂与双酚A型环氧树脂形成新的树脂基体,赋予环氧树脂复合材料良好的韧性、力学性能和耐热性能;同时,复配环氧改性聚硼硅氧烷树脂和水滑石基阻燃剂,赋予环氧树脂复合材料优异的低烟阻燃性能;同时添加特定的固化剂组合使得环氧树脂复合材料的阻燃性和施工性能得到充分的保证。本发明提供的低烟阻燃的环氧树脂复合材料性能优异,制备工艺简单、成本低廉,具有极大的工业应用前景。
本发明提供了一种硅碳复合材料及其制备方法和应用,所述硅碳复合材料的制备方法包括如下步骤:将含碳有机物和有机溶剂混合,配制有机溶液,将硅颗粒和所述有机溶液混合后进行固化,得到硅‑含碳有机物,所述含碳有机物中碳的质量分数高于50%;在惰性气体保护下,将所述硅‑含碳有机物进行碳化反应,得到硅碳复合材料。本发明提供的硅碳复合材料的制备方法,能够使硅颗粒嵌在无定形碳中,而无定形碳形成稳定的外壳和内部的三维骨架结构,并包裹嵌在其中的硅颗粒,从而使硅碳复合材料具有较高的结构稳定性,在充放电的过程中在无定形碳的保护下,能避免硅颗粒的体积膨胀严重,出现坍塌现象。
本发明公开了一种硫掺杂ReSe2/MXene复合材料的制备方法,以MXene为主要基底,将合成的ReSe2负载在MXene上,将硫元素掺杂到ReSe2/MXene复合物中,经热处理反应制得硫掺杂ReSe2/MXene复合材料。所述硫掺杂ReSe2/MXene复合材料导电性佳,层间距增大,比表面积大。MXene特殊的层状结构有效减缓在循环充放电过程中由于负极材料的团聚或体积膨胀而带来的电学性能下降、结构塌陷等问题;ReSe2的负载有效提高了层间距,增大比表面积;进一步地,硫元素的掺杂使ReSe2/MXene复合材料暴露更多活性位点与空位,提高材料的储钾性能。MXene,ReSe2,硫原子之间以弥补各自的缺陷和不足,具有协同增效作用,最大程度地提高了复合材料的储钾性能,比容量、充放电稳定性、电子转移速率等性能。同时,制备工艺简单,性能可控。
本发明公开了一种仿玻璃复合材料及其制造工艺,涉及复合材料技术领域。本发明提供的仿玻璃复合材料的制造工艺,在注塑前先完成纹理的转印,利用材料的相似性,将含有相同PC成分的材料通过注塑工艺熔融成型,使得材料内部结合紧密,避免了普通复合材料的分层问题,再通过淋涂加硬的工序,对材料进行加硬,使得制成品的表面硬度可达到1000GF*4H无明显划痕,可与玻璃的硬度相媲美,且外观上具有良好的玻璃质感。本发明提供的仿玻璃复合材料的制造工艺,与玻璃工艺相比,极大地降低了生产成本。
本发明提供了一种纳米复合材料及其制备方法与防污抗菌涂料,涉及复合材料技术领域,该纳米复合材料,包括电荷转移型自动氧化还原纳米材料和用作电荷转移型自动氧化还原纳米材料载体的石墨烯,电荷转移型自动氧化还原纳米材料分散于石墨烯的片层结构中,利用该纳米复合材料制备得到的涂料缓解了现有技术的用于船舶的无毒防污抗菌涂料防污期效短、价格昂贵和使用条件受限制的技术问题,利用该纳米复合材料制备得到的涂料具有抗菌防污、耐腐蚀、环境友好、低成本和使用寿命长的特点。
本发明公开了一种纳米金‑碳纳米管复合材料的制备方法,首先成功合成了1,3‑二(3‑溴丙基)咪唑溴盐离子液体,并以此为形貌调控剂,通过调节离子液体的浓度和还原剂的用量,成功制备了空心纳米金球,并与羧基化碳纳米管复合形成纳米金‑碳纳米管复合材料,用上述复合材料修饰电极作为工作电极,对曲酸进行电化学分析,该碳纳米复合材料具有导电性能优越、生物相容性能好等优点,本发明制备方法的原料价格相对较低,操作简便可控,重复性高,绿色环保,易于实现规模生产,制备的纳米金‑碳纳米管复合材料表现出对曲酸良好的电催化活性。
本发明公开了一种高流动聚砜复合材料,按重量份计,包括如下组分:聚砜90‑99份;热致液晶聚合物0.1‑10份;抗氧剂0.1‑0.5份;吸酸剂0.2‑0.3份。本发明通过采用特定结构式及其特定重量份的热致液晶聚合物(TLCP)添加至聚砜基体中,并辅以特定重量份的抗氧剂和吸酸剂,制备得到的聚砜复合材料由于在TLCP分子链引入双酚S结构单元及间苯结构单元,增加TLCP分子柔性,降低TLCP熔点,提高TLCP与PSU树脂的相容性,改善了聚砜复合材料的加工性能,得到聚砜复合材料与PSU纯树脂相比,流动性提高1倍以上,同制品下降低加工温度30℃,提高生产效率50%以上,拓展该聚砜复合材料在汽车薄壁耐热制件、超薄壁化电气零部件、食品餐具等领域的应用。
本发明提供了一种碳/硫化锂复合材料的制备方法,包括:S1)将有机硫酸锂与第一高分子聚合物在溶剂中混合,得到混合溶液;S2)将所述混合溶液经喷雾干燥或静电纺丝后得到前驱体复合材料;S3)将所述前驱体复合材料在保护气氛中高温碳化,得到碳/硫化锂复合材料。与现有技术相比,本发明以有机硫酸锂作为碳源,其含有有机基团,在高温碳化过程中会变成碳,并与硫酸锂均匀地复合或镶嵌在一起,利用自带有机长链,在高温热还原的过程中既提供了硫酸锂,又提供了丰富的碳源,因此可将原位热还原后的硫化锂均匀的分散在碳材料中,同时还可有效地防止硫化锂的团聚,控制硫化锂颗粒的大小,进而提高复合材料的电化学性能。
本发明属于电池材料的技术领域,尤其涉及一种电池复合材料及其制备方法、电极片和电池。本申请提供了一种电池复合材料的制备方法,包括以下步骤:步骤1、将柠檬酸、聚偏氟乙烯、氯化钠、二氧化锡和溶剂混合,形成混合物;步骤2、将所述混合物烘干,得到沉淀物;步骤3、在保护气氛下,将所述沉淀物煅烧,得到电池复合材料。本申请还公开了电池复合材料、电极片和电池。本申请提供的电池复合材料,能克服了二氧化锡电池负极材料在充放电的过程发生的体积膨胀效应,有效解决了二氧化锡电池容量衰竭过快和循环性能差的技术问题。
本发明公开了一种氟氮掺杂石墨烯包覆钛酸锂复合材料及其制备方法,制备方法包括以下步骤:S1、将钛白粉、氟化锂、氢氧化锂、碳酸锂以及固态有机氮化物作为原料,制备氟氮掺杂的钛酸锂材料;S2、将氟氮掺杂的钛酸锂材料与金属钨酸盐和/或金属钼酸盐在有机溶剂中球磨充分混合,烘干后得氟氮掺杂的钛酸锂复合材料;S3、将氟氮掺杂的钛酸锂复合材料与高端石墨烯混合,在有机溶剂中球磨充分混合,在140‑170℃下进行喷雾干燥,制得氟氮掺杂石墨烯包覆钛酸锂复合材料。本发明的氟氮掺杂石墨烯包覆钛酸锂复合材料,提高了钛酸锂电池的充放电倍率,有效抑制了钛酸锂的胀气,进一步提高了钛酸锂材料的循环寿命。
本发明公开了一种高导热近净形的金刚石/铜复合材料及其制备方法,属于金属材料领域。所述金刚石/铜复合材料具有三维连通结构,由金刚石颗粒骨架、过渡层、金属铜及表面渗出铜组成。制备方法为:先将盐浴镀W后的金刚石颗粒近终成形,然后采用无压熔渗法制备高导热性能复合材料。本发明有效解决了金刚石和金属相容性、金刚石/铜复合材料难于机加工、表面质量不高、产品形状单一、生产成本高等诸多问题,所制备的复合材料的致密度高、组织分布均匀、界面厚度可控、导热率高,该工艺设备简单、可操作性强、能耗成本低廉、可实现批量生产,具有高热导性能,可满足热管理或电子封装领域需求。
本发明公开用于骨缺损修复的生物复合材料,所述生物复合材料包含有效量的中药活性物质,所述中药活性物质包含葛根素、淫羊藿素、染料木素、姜黄素、柚皮苷、柚皮素、白藜芦醇、葛根提取物、淫羊藿提取物、姜黄提取物中的至少一种。本发明所述生物复合材料,采用含有特定成分的中药活性物质作为促进骨生长的生长因子,来源广泛,价格低,结构及理化性质稳定,将中药活性物质或中药活性物质的微球或纳米粒均匀分散在支架材料中,使用时,中药活性物质或中药活性物质的微球或纳米粒从支架材料中持续释放,长期在骨缺损局部保持疗效,促进骨生长。同时,本发明还公开了一种所述生物复合材料的制备方法以及由所述生物复合材料制备而成的人工骨支架。
本发明涉及一种废弃磷矿渣-环氧化天然橡胶复合材料及其制备方法,该复合材料包括环氧化天然橡胶100份,磷矿渣10~50份,偶联剂0.5~2.5份,交联剂0.5~3.0份及一些加工助剂;制备方法是将磷矿渣制成改性磷矿渣或磷矿渣分散体,或直接将磷矿渣和环氧化天然橡胶、偶联剂、交联剂及其他助剂采用常规方式在炼胶机上混炼均匀,制成磷矿渣-环氧化天然橡胶复合材料;或者在不断搅拌条件下将改性磷矿渣分散体均匀地混合到环氧化天然胶乳后,进一步通过乙醇或蒸汽或水煮凝固、压片、洗涤、干燥系列常规加工工艺制成复合材料;该复合材料具有价格低廉,抗撕裂、抗拉伸、抗湿滑性能良好,不易生热,解决了废弃的磷矿渣污染环境的问题,有助于环境资源的保护,还可节约资源。
本发明是关于一种锂离子电池负极用复合材料及其制备方法以及含该 负极材料的负极和电池。该复合材料含有石墨和金属,金属包覆在石墨表面, 其中,所述金属为铜和/或镍,以石墨的重量为基准,金属的含量为0.1-5重 量%。该复合材料的制备方法包括将金属盐的水溶液和石墨的混合物与金属 盐的沉淀剂接触,将包覆在石墨表面的金属盐的沉淀转变为金属的氧化物, 并将金属氧化物还原为金属,其特征在于,所述金属的盐为水溶性铜盐和/ 或水溶性镍盐,石墨和所述水溶性金属的盐的用量使制得的复合材料中金属 的含量占石墨的0.1-5重量%。本发明提供的负极用复合材料中的金属含量 降低,可以显著地提高电池的倍率放电性能、初始放电效率、可逆容量和循 环性能。
本发明公开了一种富锂铁系复合材料及其制备方法和其应用。富锂铁系复合材料,其特征在于:包括富锂铁系材料,所述富锂铁系材料的分子式为aLiFeO2·bLi2O·cMxOy,其中,所述分子式中的a、b、c为摩尔数,且0≤c/(a+b+c)≤0.02,1.8≤b/a≤2.1;M为掺杂元素;1≤y/x≤2.5。富锂铁系复合材料能够提供丰富的锂,而且富锂铁系材料纯度高,表层残存的残碱含量低,具有高的容量和补锂效果以及良好的存储稳定性和加工稳定性,其制备方法能够保证制备的富锂铁系复合材料结构和电化学性能稳定,节约生产成本。富锂铁系复合材料在正极补锂添加剂、正极材料、正极和锂离子电池中应用。
本申请公开了一种富锂复合材料及其制备方法和应用。本申请富锂复合材料包括核体和包覆于核体的致密疏水层,核体包括富锂材料,致密疏水层的材料包括聚阴离子型电化学活性材料。本申请富锂复合材料含有致密疏水层,具有高的致密性,且残碱含量低,与电解液接触的化学稳定性高。另外,富锂复合材料的制备方法能够保证制备的富锂复合材料结构和电化学性能稳定,而且效率高,节约生产成本。
本发明属于竹基材料技术领域。本发明提供了一种竹基纤维复合材料及其制备方法,制备方法包含如下步骤:将竹纤维束在增塑剂溶液中进行增塑处理,得到增塑竹纤维束;将增塑竹纤维束顺次进行氧化处理、浸渍碳化,得到碳化竹纤维束;对碳化竹纤维束顺次进行浸胶处理、热压成型,得到竹基纤维复合材料。本发明还提供了一种竹基纤维复合材料的应用。本发明的竹基纤维复合材料颜色丰富,自然饱满,具有高级木材的纹理,防霉效果、耐候性和耐光老化性好,能够广泛用于制备明清家具;复合材料尺寸稳定性良好,吸水宽度膨胀率和吸水厚度膨胀率显著降低,材料内部应力均匀、不易开裂,力学性能良好;本发明的制备方法生产成本低,能耗低,环境友好。
本发明公开了一种黏性流动态高熵非晶合金增强铝基复合材料及其制备方法。高熵非晶合金的元素组成为Mg、Al、Zn、Cu、Ti、Cr、Mn、Ni中的4~6种。对按照所需成分配比混合后的粉末进行机械合金化后可以得到本发明中的高熵非晶合金粉末,该高熵非晶合金过冷液相区的温度与粉末冶金制备铝基复合材料的烧结温度重合。通过放电等离子烧结工艺对混合均匀的高熵非晶合金增强铝基复合材料粉末进行烧结,在烧结温度内处于黏性流动态的高熵非晶合金粉末经挤压形成了非连续网状结构,该特殊的结构提高铝基复合材料的强度和塑性。本发明中所制备的黏性流动态高熵非晶合金增强铝基复合材料具有高强度、高塑性、高致密度、低密度等优良性能。
本发明公开了一种新型改性多壁碳纳米管?环氧树脂复合材料,该复合材料中的改性多壁碳纳米管的重量百分比含量为0.5%?5%,该多壁碳纳米管采用硅烷偶联剂KH560进行改性,多壁碳纳米管与KH560的质量比为50:1。本发明还公开了该复合材料的制备方法。本发明制备的新型改性多壁碳纳米管?环氧树脂复合材料柔韧性好,耐热性能佳,耐冲击性能优异,且多壁碳纳米管的分散性好,该复合材料的制备方法简单,生产过程中无有毒物质的释放,且制备成本低。
本发明实施例提供了一种生物可降解Mg‑Zn‑Cu层状复合材料及其制备方法。该复合材料具有依次相连的外层、中层和内层,所述外层为铜合金,所述中层为锌合金,所述内层为镁合金,该复合材料包括以下体积百分比计的组分:所述铜合金10~25%,所述锌合金20~35%,余量为所述镁合金,解决了现有技术中存在的单一金属材料腐蚀过快、降解较慢以及弹性模量过高的问题,该复合材料不仅具有优异的生物相容性,良好的力学性能和耐蚀性能,而且还具备长效抗菌功能,在医用植入材料领域具有重要的应用价值。本发明另一实施例还提供了上述生物可降解Mg‑Zn‑Cu层状复合材料的制备方法。
本发明属于碳基复合材料技术领域,公开了一种金属氧化物量子点/三维多孔石墨烯复合材料及其制备方法和应用。合成步骤如下:将微米尺度的三维多孔石墨烯粉末超声分散到有机溶剂中,再加入金属盐,搅拌溶解,然后在搅拌条件下缓慢滴加一定用量比的去离子水;待分散均匀后转移至反应釜中进行水热反应;将所得产物抽滤、洗涤、烘干,获得金属氧化物量子点/三维多孔石墨烯复合材料。本发明方法简单、成本低、易于规模化生产。所制备的复合材料仍保持三维多孔石墨烯的微/纳结构,且金属氧化物量子点在三维多孔石墨烯表面分布均匀,平均粒径在1~5nm之间,将该复合材料应用于电化学储能领域,可实现超高倍率性能以及高循环稳定性的电化学性能。
中冶有色为您提供最新的广东有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!