本发明公开了一种空气稳定型红磷基复合负极材料,由导电聚合物、红磷、碳材料组成,导电聚合物包覆在红磷/碳复合材料外层;其中,红磷与碳材料质量配比范围在(10~0.1):1之间,导电聚合物与红磷/碳复合材料质量配比范围控制在(0.05~5):1。该方法生产周期短、安全性好、实用化程度高。本发明所提供的钠(钾)离子电池负极材料具有优异的空气稳定性,较高的充放电比容量和良好的循环稳定性,因而本发明的钠(钾)离子电池可作为一种制备简单、存储方便的新型储能材料,具有较好的应用前景。
本发明提供了一种蜂窝状二氧化锡材料的制备方法,属于锂(钠)离子电池电极材料制备技术领域,主要目的是为了解决现有电极材料循环稳定性差及比容量低等问题。本发明的方法包括下述步骤:一、将一定比例的正硅酸四乙酯、乙醇、水和氨水混合,在室温下搅拌得到二氧化硅小球;二、使用水热法在步骤一所制备的二氧化硅小球上生长一层二氧化锡;三、以氯化钠为模板葡萄糖为碳源,高温碳化得到包覆纳米小球的碳膜,使用氢氧化钠刻蚀二氧化硅,得到蜂窝状二氧化锡/碳复合材料。本发明采用模板法制备出的二氧化锡/碳复合材料,此材料在锂(钠)离子电池中表现了较高的比容量和良好的循环稳定性等优异的电化学性能。
本发明涉及一种氮化铝/石墨叠层复合材料的制备方法。一种制备氮化铝/石墨叠层复合陶瓷材料的方法,其特征在于它包括如下步骤:1)选取石墨并加工成所需的形状,采用喷射成形工艺,将配置好的氮化硼乳液喷涂于石墨表面,在空气中自然干燥后,在氮化硼层上涂覆金属铝粉;所述的氮化硼乳液的质量浓度为35-40%,无水乙醇作为溶剂;2)放入烧结炉中,抽真空使真空度小于或等于1PA,升温进行热处理,热处理时间为80-90分钟,热处理温度为1250-1350℃,热处理结束后,断电,随炉冷却到室温,得产品。该方法热处理温度低、工艺过程简单、易于操作控制、成本低,制备的氮化铝/石墨复合叠层材料具有耐高温腐蚀能力。
本发明公开了一种改性聚氨酯饮料瓶的制备方法,包括以下步骤:备料、真空干燥、加热搅拌和挤出成型;本发明的制备方法更加的合理,通过以聚氨酯为主要原料,制备过程中加入水性丙烯酸酯、硬脂酸钙、硼酸锌和硼酸铝,可以提高改性聚氨酯复合材料的耐热性和耐火性;同时使得聚氨酯复合材料的耐老化性更好,使得制备出来的瓶子不易出现碎裂,老化的现象,通过加入相容剂、高韧性助剂、安定剂和固化剂,能够很好地改善材料的尺寸稳定性,同时又保持了材料的冲击韧性,使得材料的氧化性更好,耐碱性以及耐磨性也得到很大的提高,相比现有的制备方法而言,本发明更加的科学合理,具有更好的使用效果,应用前景广泛,利于推广。
公开了一种制备微纳米磁性复合颗粒的方法及复合颗粒。所述微纳米磁性复合颗粒的制备方法包括将含有微纳米磁性粒子和基材的微纳米磁性纤维进行流体化处理。本申请公开的磁性微纳米复合颗粒的尺寸均匀可控,主颗粒尺寸误差范围可调节为1%‑10%,根据工艺优化可改善,基材以聚合物、无机玻璃材料及其复合材料为主,同一微纳米磁性复合颗粒中,可兼具聚合物材料、玻璃材料及其复合材料,颗粒结构高度可控,可为球型、双球型、包裹型、梭子型、扁状型、棒状型、环型、煎蛋型结构或基于球型、双球型、包裹型、梭子型、扁状型、棒状型、环型、煎蛋型的组合结构,且工艺简单,可规模化生产,生产效率高。
本揭示提供了一种有机发光二极管器件结构及其制造方法。所述有机发光二极管器件结构包括:由下至上依序设置的基体层、阵列段膜层、有机发光层及薄膜封装层;触控层、偏光片及盖板玻璃,依序设置于所述薄膜封装层上方;复合材料层,设置于所述基体层下方;以及泡沫铜箔层,设置于所述复合材料层下方。所述有机发光二极管器件结构能够解决现有有机发光二极管面板中背板层穿透率低、散热差、易于缓冲层剥离、易断裂等问题。
本发明公开了一种二氧化硅气凝胶制备方法,所述方法包括,将硅前驱体、醇溶剂和水混合和搅拌,获得硅溶胶;将所述硅溶胶浸入纤维毡进行复合,获得纤维和硅溶胶的复合材料,并在所述复合过程中挥发出醇气体;将所述复合材料凝胶后进行干燥处理,获得二氧化硅气凝胶以及醇和水的混合物;将所述醇气体进行水溶解,获得醇溶液;将所述水溶解后剩余的醇气体进行活性炭吸附后排至大气中。采用本发明,释放的气体中醇类挥发性物质含量<2.0mg/m3;同时回收的醇可以作为制备二氧化硅的原料,还可以清洗复合过程残留在自动复合设备中的残留原料;回收的水可以作为吸收醇气体原料,实现了废物循环利用,对环境友好。
本发明公开了一种油田采油采气用油嘴,包括油嘴外壳套和芯体,所述油嘴外壳套包括油嘴杆和带法兰螺栓的油嘴头,所述油嘴杆在靠近法兰盘出设置一段外丝,所述油嘴外壳套内沿轴线设置有带台阶的通孔,台阶以下为过油孔,其横截面为圆形,在台阶以上为芯体腔,所述芯体腔位于油嘴头一侧,所述芯体在芯体腔内靠着台阶依次设置,所述芯体至少有一个,所述芯体为超硬材料或超硬材料‑陶瓷复合材料制成,所述芯体的轴线上设置有喷油孔,所述喷油孔的直径小于过油孔的直径。本发明利用超硬材料或超硬材料‑陶瓷复合材料的优良的耐磨性能,使得油嘴的使用寿命得到极大的增加,可有效的减少油嘴的更换次数,有利于安全生产,使得油气井的开发更加合理。
本发明属于增材制造相关技术领域,其公开了适用于选择性激光烧结的聚乳酸/钙磷生物陶瓷的制备方法,该制备方法包括以下步骤:(1)以羟基磷灰石作为基体材料,将粘结剂和上述基体材料混合得到复合材料粉末;(2)对复合材料粉末进行激光选区成型,从而获得所需形状的素胚制件;(3)将素胚制件置于加热炉中进行脱脂和烧结得到烧结制件;(4)使用乳酸制品对所述烧结制件进行浸渗,以让乳酸制品渗入烧结制件的孔隙中填充孔隙,从而获得孔隙率为12%‑25%的聚乳酸/钙磷生物陶瓷。本方法能制得具有良好的骨诱导性和生物降解性、以及可个性化制备且分子量可变的聚乳酸/钙磷生物陶瓷。
本发明公开了一种基于四氧化三钴的水系非对称超级电容器的制备方法,包括正极、负极和电解质溶液,所述正极材料为四氧化三钴纳米线阵列,所述负极为四氧化三钴/聚吡咯复合纳米线阵列,所述电解质溶液为水溶性电解质溶液;其制备方法包括如下步骤:(1)制备四氧化三钴正极;(2)制备四氧化三钴/聚吡咯复合材料负极;(3)以所述水溶性电解质溶液为基础组装成所述水系非对称超级电容器。本发明得到的四氧化三钴/聚吡咯能在负电位窗口工作,且质量比电容可以达到335.34F/g,是传统的活性炭负极材料的2~4倍,得到的水系非对称超级电容器的工作电压可达到1.4V,能量密度高,制备工艺简单,成本低。
本发明公开了一种钆修饰的Fe3O4@PDA纳米材料的光热诊疗剂的制备,属于新型纳米复合材料的制备技术。本发明采用已被临床应用的T1造影剂Gd?DTPA、T2造影剂Fe3O4和具有良好的生物相容性和近红外吸收能力的PDA;用共沉淀法合成了10纳米左右的Fe3O4纳米粒子,在其表面包裹PDA,得到单分散性较好的Fe3O4@PDA纳米材料;接下来为了将Gd?DTPA与之接合,我们使Fe3O4@PDA氨基化,最后得到了需要的Fe3O4@PDA?NH2?DTPA?Gd纳米复合材料。实验结果证实,该材料同时具有良好的T1、T2成像效果和光热转换能力。
轴向柱塞式水液压泵,属于液体变容机械;泵类,兼顾阀配流和端面配流柱塞式水液压泵的优点,并要减小径向尺寸和体积、减轻重量、提高比功率和容积效率、延长使用寿命。本发明采用平板阀配流,柱塞及柱塞孔在相对于主轴的圆周上轴向均布,靠斜盘和中心弹簧实现柱塞的往复运动,柱塞、柱塞球头和滑靴开有中心孔;后端盖、缸体、泵壳、前端盖上分别开有流道、推力轴承中心部位有环形腔室,主轴内有轴向流道,表面开有径向流道,各流道连通使所有摩擦副直接水润滑和冷却,主要摩擦副采用了耐蚀合金、陶瓷或高分子复合材料,可有效降低摩擦,延长工作寿命,体积小、重量轻、容积效率高、比功率大、使用寿命长,能适用于海水、淡水及高水基等低粘度液压介质。
锂离子电池用多相复合负极材料及其制备方法,涉及一种锂离子电池负极材料,尤其是涉及一种可充电锂离子电池使用的多相复合负极材料及其制备方法。该多相复合负极材料可以表示为Sn-Fe-Mo-C-Al2O3,由Sn、Fe、Mo、C和Al2O3多孔材料组成,含量为Sn∶(Fe+C+Al)∶Mo=1∶1∶0.05~0.2(摩尔比)。制备时将适量锡盐、铁盐、铝盐和碳源溶液混合,然后与一定浓度的氨水反应,得到混合前躯体,再与钼盐均匀混合,加热烘干后,在氢气气氛下高温还原。该复合材料可用作锂离子电池负极,工艺简单,以复合相作为惰性基体,可以有效提高电池的体积容量(可以达到碳材料体积容量的2-3倍)和循环性能。
本发明公开了一种环氧片状模塑料,其中间芯材是由浸渍了环氧树脂糊的纤维组成,上下两面以PE薄膜覆盖。按重量份数计,该环氧片状模塑料由以下原料制成:环氧树脂100份,稀释剂4~20份,固化剂15~80份,增稠剂9~16份,有机酸6~18份,内脱模剂1~4份,填料80~180份,纤维50~150份。该环氧片状模塑料的制备步骤包括环氧树脂糊的制备、环氧片状模塑料的制备和环氧片状模塑料的熟化。该环氧片状模塑料具有热流动性能好、固化时间短、储存时间长等优点,并且制备工艺简单。通过热压固化可制备强度较高的环氧复合材料结构部件,与不饱和聚酯SMC制品相比强度大幅提高,耐腐蚀性能及绝缘性能都有所增强。
本发明涉及一种粒子相聚合反应制备有机聚合物的方法,所述的粒子相聚合反应是指将至少一种或一种以上的聚合原料分别经雾化形成粒径为0.5~50μm的悬浮微粒,再将一种或一种以上该悬浮微粒通过压力为0.01~1.0MPa的气流带入由串联的反应仓形成的反应区内,经一级或一级以上聚合反应,反应温度为-15~270℃,形成有机聚合物。本发明涉及的粒子相聚合反应制备有机聚合物的方法不同于传统的聚合反应方法,其方法高效、可靠、简单易行、成本低,适用范围广,本方法制备的有机聚合物产品的单元序列结构可控、分子量高、分子量分布均匀、单分散性好、品种丰富,产品可以满足多组分复合材料和特殊型体材料的需要。
本发明涉及一种自润滑高强度浇注尼龙的制备方法,包括有以下步骤:1)取己内酰胺单体,表面改性过的纳米TiO2和碱性处理过的纳米石墨粉,搅拌并加热升温,同时抽真空,继续搅拌己内酰胺熔体混合物,得到含纳米复合材料的己内酰胺熔体;2)将氢氧化钠固体加入其中,升温,继续搅拌,得到碱性己内酰胺熔体混合物;3)恢复反应釜压力至大气压,将IPDI或TDI加入其中,搅拌均匀,得到己内酰胺尼龙预聚体;4)将己内酰胺尼龙预聚体自流或加压注入模具腔内,闭合模具后继续保温,然后自然冷却至室温,即得到成型好的自润滑高强度浇注尼龙部件。本发明具有工艺装置设备简单,工艺路线简捷,成型控制简单,部件尺寸、形状无限制的优点。
本发明涉及一种天然石墨与MnO复合高性能电极材料及其制备方法。该方法利用KMnO4溶液与天然石墨反应,生成MnO2与天然石墨的混合物,生成的MnO2部分进入天然石墨形成插层结构,部分沉积在天然石墨表面,然后在惰性气氛围下煅烧,利用天然石墨的还原性能将MnO2还原成MnO,形成天然石墨与MnO的复合材料。该制备方法中,天然石墨既作为主体材料又作为还原剂,简化了工艺,且得到性能优异的复合材料。层间MnO相支撑天然石墨间层而不坍塌,扩大了天然石墨的层间距,有利于锂离子的快速脱嵌,且不影响天然石墨的结构,有利于提升天然石墨复合电极材料的循环性能;天然石墨表面沉积的MnO辅助提升容量。结合二者获得容量高、循环性能好的天然石墨复合电极材料。
本发明公开了一种金属/碳化物/氧化物复合纳米材料的制备方法及应用,属于纳米材料制备领域。本发明采用一步原位热分解还原法,首先采用含碳有机络合体通过络合反应制备高熔点金属的沉淀物,然后将制备的高熔点金属的络合沉淀物在高温下原位热分解,有机络合物高温热解产生的C高温下具有强的还原性,可将高温热解产生的氧化物逐步还原为碳化物及金属,通过控制反应温度及时间可以调控产物的组成,得到金属‑碳化物‑氧化物的纳米颗粒复合材料。本发明采用一步法制备难熔金属及其碳氧化物复合材料,比现有的高温熔炼法工艺简单、经济环保,适用于批量生产。
本发明涉及纳米二氧化硅改性RFI用环氧树脂膜及其制备方法,该树脂膜组份为低粘度环氧树脂、高温潜伏型固化剂、乙二醇、硅烷偶联剂、无水乙醇、纳米无机颗粒,其中乙二醇与高温潜伏型固化剂的质量比为1 : 5,环氧树脂与高温潜伏型固化剂质量比100 : 3,纳米颗粒与偶联剂质量比为100 : 5,纳米颗粒与无水乙醇的质量比为1 : 10;该方法包括环氧树脂与三氟化硼乙胺络合物预聚体、改性纳米SiO2、纳米SiO2改性环氧树脂和纳米SiO2改性环氧树脂膜制备步骤。本发明解决了无机颗粒增强树脂基复合材料无法采用树脂传递模塑技术制备的问题,所制备的树脂膜中纳米SiO2均匀分散,厚度均匀,在常温下能自由弯曲,不粘手,可以再加工。
本发明提供一种光催化剂的制备方法及其还原含铬废水的应用。所述光催化剂采用氟氮共掺杂二氧化钛/石墨烯复合材料,所述氟氮共掺杂二氧化钛/石墨烯复合材料按重量百分比,包括:石墨烯1~10%,二氧化钛80~98.8%,氟0.1~5%,氮0.1~5%;本发明具有如下有益效果:氟氮共掺杂后的二氧化钛材料提高了对可见光的利用,在可见光(λ>420nm)下对于六价铬也具有一定的还原能力,而二氧化钛在可见光下基本没有响应。
本发明涉及一种压电纤维复合结构层的制备方法,采用切割法或模压法制备压电陶瓷或压电单晶薄层,获得不同厚度的压电薄层;采用热压法将热固性聚合物制备成不同厚度的聚合物薄层,将聚合物薄层在长度和宽度上切割成与压电薄层一致;由下而上,将压电薄层和聚合物薄层交替堆叠并对齐,压电薄层和聚合物薄层之间涂覆聚合物胶液,并控制最上层为压电薄层,采用热压法将上述堆叠体热压固化,得到2-2型压电复合结构;根据压电纤维复合结构层成品厚度要求,将2-2型压电复合结构沿堆叠方向进行切割即得。其可精确控制压电纤维复合层结构参数,制备出纤维体积分数及尺寸系列化的复合结构层,有效提高MFC结构压电纤维复合材料的生产效率。
本发明属于LED封装领域,并具体公开了一种白光LED及其制备方法,该白光LED包括基板、LED芯片和透光壳体,LED芯片设置在基板表面,其上涂覆有由胶体基质、荧光粉和量子点复合材料混合而成的荧光胶体,量子点复合材料由量子点颗粒和高导热系数材料颗粒复合而成;透光壳体设置在基板上方,将LED芯片和荧光胶体密封在内,其与荧光胶体之间填充有封装胶。该方法包括:在基板上表面安装LED芯片,将荧光胶体点涂在LED芯片上方,加热固化;将透光壳体嵌套在LED芯片和荧光胶体上方;在荧光胶体与透光壳体的空隙处填充封装胶固化后获得白光LED。本发明可有效降低白光LED的工作温度,降低荧光粉和量子点用量,减少成本。
本发明提出了一种用于VKORC1‑1639G>A基因多态性检测的电化学传感器制备方法,首先采用氨基修饰的聚酰胺树枝状聚合物PAMAM处理纳米空心铂使其功能化得到PtPNPs‑PAMAM复合材料,然后将富勒烯纳米粒子,单链DNA信号探针与该复合材料混合,制得氧化还原探针;然后通过还原性氧化石墨烯四乙烯五胺,纳米金,亲和素,层层自组装用于生物素化的四面体DNA捕获探针的固定,从而制备了VKORC1‑1639G>A基因多态性检测的电化学传感器,该传感器成功的用于VKORC1基因发生单碱基突变的检测。本发明的优点在于灵敏度高,特异性强,检测迅速,方便。本发明为华法林个体化用药提供了新的检测方法。
本发明公开了一种石墨烯/硅/导电聚合物复合负极材料的制备方法,属于电化学和新能源材料领域。本发明首先制备出氧化石墨烯材料,将氧化石墨烯与硅粉、聚合物单体混合,在一定的条件下使聚合物单体聚合,然后直接干燥得到氧化石墨烯/硅/导电聚合物薄膜复合材料,然后采用水合肼蒸汽还原法制备出石墨烯/硅/导电聚合物泡沫复合材料。本发明提供的泡沫材料具有良好的柔性,适合用于制作柔性电极。本发明制备的材料作为锂离子电池负极材料,无需添加任何助剂,也不需要使用金属基底,显示出良好的循环稳定性和较高的比容量。
本发明属于光纤传感技术领域,公开了一种一体化成型隧道用光纤光栅传感器及其制作方法。本发明采用经高温退火处理得到的再生光纤光栅作为敏感元件,采用涂碳工艺制作涂碳光纤光栅,将涂碳光纤光栅置于热压模具内,并加入金属‑石墨复合材料进行热压,待热压结束后脱模得到一种嵌入金属‑石墨复合材料内部的涂碳光纤光栅传感器。本发明提供的光纤光栅传感器能够适应隧道内高温、高湿或者浸水环境,响应灵敏度更高,亦能更好抵御外界环境的侵蚀。
本发明属于一种金属有机框架(MOF)和过渡金属氢氧化物异质材料的制备方法及其应用,公开了一种由镍钴金属氢氧化物作为前驱体和模板剂,有机配体通过部分离子交换的方式获得由镍钴金属有机骨架/镍钴金属氢氧化物二维异质纳米片组成的三维纳米花复合材料及其在超级电容性能方面的应用。本发明采用两步合成技术,首先利用尿素与硝酸钴和硝酸镍在以蒸馏水为溶剂的体系自组装得到具有纳米花结构的NiCo(OH)2;然后再利用对苯二甲酸有机配体与NiCo(OH)2在N,N‑二甲基甲酰胺,乙醇与水的混合溶液中通过部分离子交换的方式得到分布尺寸且大小均一的超薄NiCo‑MOF/NiCo(OH)2纳米花结构。另外,本发明具有大量的活性位点,很好的反应活性和导电性,使得它具备良好的超级电容性能。
一种玉米蛋白/纤维素混合溶液,将玉米蛋白分散于含6~8WT% NAOH和10~14WT%尿素的组合水溶液中,在室温下搅拌均匀得到0.5~5WT%玉米蛋白溶液,然后将制得的玉米蛋白溶液预冷到-12~-13℃,加入纤维素,搅拌均匀即得到透明的玉米蛋白/纤维素混合溶液;其中按重量比,玉米蛋白与纤维素的比例为:0.5∶9.5~5∶5,玉米蛋白和纤维素占混合溶液的4~8WT%,其余为NAOH/尿素的组合水溶液。或者用预冷到-12~-13℃的含有NAOH、尿素和玉米蛋白的混合水溶液直接溶解纤维素得到玉米蛋白/纤维素混合溶液。所得的混合溶液经流延成膜等方法,可制得玉米蛋白/纤维素膜、纤维等复合材料。
本发明涉及一种吸附水中的磷污染物的方法。一种利用钢铁工业废渣吸附水中磷污染物的方法,其特征在于它包括如下步骤:1)将钢渣破碎至5~10目,用蒸馏水洗净、烘干,备用;铁尾矿磨细至200目,备用;然后按各原料所占质量百分数为:钢渣45%~55%、铁尾矿35%~45%、粘结剂5%~15%,混合,得到复合材料,备用;2)将复合材料平铺于容器中放入高温电阻炉焙烧,以4~8℃/min升温至100℃,保温60min;再以10~12℃/min升温至700~800℃,保温1h~1.5h,自然冷却至室温,得到吸附材料;3)将吸附材料按1g~1.5g/100mL比例加入到磷含量为30mg/L以下的废水中,调节废水的pH值为7~9,充分混合反应后废水中磷去除率达到98%以上。更好的利用钢铁工业废渣实现以废治废,磷去除率高。
本发明公开了一种硅锡/碳嵌入式多孔复合负极材料,在制备过程中直接形成嵌入式的多孔复合结构,单质锡与硅互相嵌入形成复合纳米颗粒,纳米颗粒在粘结剂的作用下形成稳定的交联结构,粘结剂碳化后形成多孔碳层;其中细小的锡颗粒嵌入到硅颗粒中形成具有多孔结构的复合材料,复合材料表面的锡颗粒经酸腐蚀进一步形成多孔结构。该复合电极材料具有良好的力学性能、导电性能、倍率性能和稳定性能;且涉及的制备方法简单、成本较低,易于工业化生产。
中冶有色为您提供最新的湖北有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!