本发明提供一种储能产能一体化电池,包括内部中空的外壳,所述外壳内设置光电阳极、锌条、电解质、隔离层和阴极,所述光电阳极、隔离层和阴极自上而下依次堆叠,所述外壳包括外壳上部和外壳下部,所述外壳上部的顶端开设通孔,所述光电阳极包括玻璃基板和复合材料层,所述玻璃基板的顶端与外壳上部的顶端粘接,所述复合材料层沉积在玻璃基板的底端,所述复合材料层由Ag@V3O7构成,所述锌条的顶端与外壳上部的顶端粘接,所述锌条的中间区域与光电阳极接触,所述电解质填充在玻璃基板和阴极之间。该储能产能一体化电池具有高功率密度、能快速充电、循环寿命长和安全性能良好等优势。
本发明公开了一种高性能硫基复合正极材料及其制备方法,其中该复合材料为导电聚合物与M掺杂的硫单质复合形成的复合材料,具体为xP·{(1‑x)[yM·(1‑y)S]},其中P代表导电聚合物,S为硫,M为Se和Te中的一种或两种,x、(1‑x)分别为该复合材料中导电聚合物、以及M掺杂的硫单质的质量百分比,y、(1‑y)分别为M掺杂的硫单质中M、以及硫单质的质量百分比,0
本发明属于飞机防/除冰技术领域,具体涉及一种高电阻率电热涂层及其制备方法和应用。所述电热涂层是由CuMn合金粉与玻璃粉的复合粉经热喷涂法制备而成,所述CuMn合金粉的组分为:Cu 80%~90%,Mn 10%~14%,其它元素3%~6%,CuMn合金粉与玻璃粉的质量比100 : 0~50 : 50。本发明所述高电阻率电热涂层的制备方法简单易行,CuMn合金粉与玻璃粉的复合粉喷涂在复合材料表面形成电热涂层,涂层能均匀、致密地与复合材料结合形成一个整体,电热涂层与复合材料之间的结合强度≥10MPa,室温电阻率为50×10‑8Ω.m~1000×10‑8Ω.m,特别适合于电热功率要求在3W.cm‑2以上的情况。
本发明涉及一种加固钢管混凝土受压构件的方法,它包括下述步骤:第一步是清理外层钢管的表面;第二步是用纤维粘结剤将纤维增强复合材料制成的纤维织物围覆在钢管周围,与钢管混凝土受压构件连接为一整体;所述纤维增强复合材料主要选自于碳纤维增强复合材料,纤维织物为纤维单向或/和多向排列的、未经树脂浸渍的布状纤维制品。本发明是为钢管提供紧箍力且与其共同工作、提高钢管混凝土受压构件的承载力、提高钢管的刚度、防止钢管被腐蚀的一种高效、经济的加固方法,该方法加固效果好,施工操作简便,加固工期短,对生产影响小,大大降低工程成本,因此具有广泛的应用前景。
本发明提供一种等离子体刻蚀装置及其边缘环,边缘环采用复合材料,复合材料包括第一材料及位于第一材料中的第二材料,以通过第二材料减少边缘环表面积累的电荷量;本发明通过宽禁带复合材料,可提高电荷迁移速率,减少边缘环表面积累的电荷量;通过高导电率复合材料,可及时引流电荷,以降低静电吸附作用力,减弱边缘环表面吸附作用,减少边缘环表面积累的电荷量;通过P型复合材料或N型复合材料,可在外电场的作用下,使得边缘环表面的电荷与副产物之间形成同种电荷的排斥,以减少边缘环表面积累的电荷量;及时排出的副产物可减少清洗反应腔的频率,提高产能;降低刻蚀工艺中产生的缺陷,提升良率。
本发明涉及一种对尼龙聚集态结构转变的控制方法,其步骤如下:将非晶态的尼龙/CaCl2复合材料压延成膜得到非晶态的尼龙/CaCl2薄膜,然后将所得尼龙/CaCl2薄膜用锂离子溶液或2‑氯乙醇浸泡处理得到结晶态的尼龙/CaCl2共混材料,或直接将非晶态的尼龙/CaCl2复合材料粉碎后用锂离子溶液或2‑氯乙醇浸泡处理得到结晶态的尼龙/CaCl2共混材料。本发明采用较为简便的方法实现尼龙材料在晶态到非晶态之间的自由转变,制备得到的晶态和非晶态复合材料具有良好的聚集态结构,在包装、信息技术和光学材料等领域具有广泛的应用前景。
本发明公开了一种可调控铜离子释放速率的宫内节育器材料,包含有铜粒子、低密度聚乙烯和可溶性生物材料,可溶性生物材料的重量百分比为宫内节育器材料总重量的0.5-10%(优选值为2.5-7.5%),该可溶性生物材料为葡萄糖和淀粉中的任一种或两种。这种宫内节育器材料制备的宫内节育器能够在Cu/LDPE复合材料IUD中铜粒子含量保持不变的情况下,大幅度提高其铜离子的释放速率,使Cu/LDPE复合材料IUD能够释放达到抑制宫腔液中精子活动能力的最小铜离子浓度的时间大幅延长,从而达到延长复合材料IUD使用寿命的目的。
本发明提供一种Pt‑Au碳基原位还原复合材料的制备方法及应用。方法为:1、制备多孔活性炭;2、合成纳米金(AuNPs);3、制备Pt‑Au碳基复合材料:称取一定量的活性炭于PE管内,加蒸馏水,充分混匀,加PDDA,超声,离心,取出上清液,向沉淀中加纳米金,超声,静置,离心,取出上清液,向沉淀中加纯水,超声分散,加入H2PtCl6,静置后,缓慢加入NaBH4,反应后测试pH,并将pH调至pH5‑6。本发明制得的复合材料可催化NaBH4还原亚甲基蓝。还可用于工业三废处理、燃料电池、废水中污染物检测等领域。该方法具有成本低、效率高、制备容易、可沉淀分离回收等优点,有利于实际推广和应用。
本发明公开了一种用于涉水建筑物的抗冲击复合防护结构,包括复合材料层以及固定在复合材料层底部的若干个吸盘,复合材料层由以改性空心玻璃微珠为填料的泡沫橡胶超弹性材料构成,改性空心玻璃微珠占复合材料层的体积比为15%以上,保证复合材料层中具有足够的密封气体用于反射爆炸冲击波,所述吸盘便于将本预制复合材料层快捷地安装到涉水建筑物表面。本发明首先利用橡胶超弹性材料的大变形特性进行爆炸冲击波能量耗散,当爆炸冲击波传到橡胶材料内部时,利用橡胶材料中改性空心玻璃微珠密封气体与周围介质波阻抗失配原理,反射冲击波传播,进一步减缓爆炸冲击波在涉水结构中的传播,综合抗爆效果显著,适用于各类涉水建筑物的防护。
本发明涉及一种多功能储库剂型药物载体及制备方法。多功能储库剂型药物载体,其特征是它由聚D,L乳酸和磷灰石组成复合材料,所述的聚D,L乳酸的分子量为10~50万,并为0.05~0.1mm的薄片,其重量占复合材料总重量的70~95%,磷灰石的粒度为15~85μm,其重量占复合材料总重量的5~30%,所述的药物载体的孔径为10-500μm。本发明提供了一种生物相容性好、具有可吸收、可缓释药物和促进新骨生长的多功能储库剂型药物载体其及制备方法。
本发明公开了一种夹心层缓释节育材料,由杂化材料层和络合聚合物基复合材料层交错叠置构成,且底层和顶层均为由聚乙烯醇和SiO2构成的杂化材料层,SiO2为10-40wt%;络合聚合物基复合材料层由聚乙烯醇、SiO2和铜盐构成,SiO2为10-40wt%,铜盐为10-40wt%。本发明可以缓慢地释放出铜离子,减小了传统的金属铜节育器和纳米铜/低密度聚乙烯节育器所产生的铜离子暴释现象。可消除植入初期由铜离子暴释所引起的大量出血、小腹疼痛和盆腔炎等副作用。释放过程为:复合材料中间层离解的铜离子在浓度梯度的作用下向表层扩散,扩散到表层的铜离子再扩散到材料与人体体液接触的界面,最后由界面扩散到人体体液。本发明延长了药物扩散的路径,增大了药物释放的阻力,减缓了铜离子的释放速度。
本发明涉及一种锂硫电池正极的制备方法,包括有如下步骤:1)金属薄片的预处理:将表面平整的金属薄片裁剪成圆片,用吸有丙酮的棉球,然后用蒸馏水超声清洗,取出后晾干;2)硫碳复合材料的制备:将处理后的金属薄片放入溅射装置的腔体中,溅射气体将二硫化碳蒸气携带至腔体内,溅射气体形成等离子体,溅射气体溅射高纯石墨靶,在预处理后的金属薄片上沉积碳膜,二硫化碳蒸气在溅射气体形成的等离子体中被分解,生成的硫及硫碳基团沉积在碳膜中,实现掺硫;沉积制得硫碳复合材料,沉积有该硫碳复合材料的金属薄片即为锂硫电池正极。本发明的制备方法有助于电池循环稳定性的提升,能避免粘合剂造成的正极导电性的下降及能缩短电池正极制备周期。
本发明公开了一种高延性混凝土中空管及其制作方法。从内到外依次为树脂基复合材料内衬层、高延性混凝土中空结构层、树脂基复合材料预应力层;高延性混凝土中空结构层的横截面有均匀分布的空心孔;树脂基复合材料内衬层为浸过树脂的聚酯毡、玻璃纤维表面毡或短切毡等玻璃纤维织物缠绕制作而成;树脂基复合材料预应力层为纤维丝与树脂复合而成的树脂基材料缠绕制作而成。内壁采用树脂基复合材料内衬层,防腐防渗,能输送腐蚀性介质水力性能优良;采用树脂基复合材料预应力层,可以防腐又避免了PCCP管中预应力钢丝锈蚀断裂的现象发生,提高了管道的耐久性;具有质量轻、耐内外腐蚀性介质、水力特性优良、刚度大、成本低、耐久性高等特点。
本实用新型涉及一种配网用防雷防污闪绝缘横担成套装置,包括复合材料横担、连塔金具和绝缘子,复合材料横担通过连塔金具与电杆连接,绝缘子安装于复合材料横担上,复合材料横担是层状实心结构,包括内芯层、中间层和外层,中间层为添加有紫外线吸收剂的基体树脂和玻璃纤维通过拉挤工艺制作的复合材料空心管,内芯层是填充于复合材料空心管内的泡沫,外层包括从内到外铺设于中间层上的耐老化表面毡和耐老化超疏水涂层。本实用新型的复合材料横担配合绝缘子使用,可大大提高线路绝缘水平,可以抵御90%以上的感应雷的侵袭,外层包括从内到外铺设的耐老化耐酸碱表面毡、耐老化超疏水涂层,使其具有良好的力学特性、绝缘特性、防老化和防积污特性。
本发明提供了一种用于吸附矿山废水中铈离子的聚丙烯纤维负载交联聚丙烯酸材料,该复合材料采用以下步骤制得:选取聚丙烯酸复合物、交联剂、引发剂,混合均匀制得胶状溶液;将聚丙烯纤维与胶状溶液混合均匀,然后在100℃~140℃的条件下进行聚合反应,制得聚丙烯纤维/聚丙烯酸复合材料,并将复合材料干燥处理;采用足量的丙酮浸泡复合材料,浸泡后烘干,重复进行浸泡、烘干步骤直至除去复合材料中未交联的低聚物,即可制得聚丙烯纤维负载交联聚丙烯酸材料。该复合材料解决了背景技术中的不足,该复合材料对稀土中的铈离子的吸附能力强,具有吸附操作简便、解吸条件温和、再生简便等诸多优点。
本发明涉及一种基于光纤光栅传感的复合材料板冲击载荷定位方法,特别是对埋入光纤Bragg光栅的0°/60°/‑60°铺层的碳纤维复合材料板的振动信号的监测方法。首先,将已经埋入光纤光栅的复合材料板划分区域,进行冲击实验,收集各区域的光纤波长漂移数据;其次,将埋入光纤光栅标定,将波长漂移数据转化为应变数据;接着,将获得的应变信号经验模态分解(EMD)分解,得到内涵模态分量(IMF);最后,信号重构后再进行相关性分析等。本发明基于光纤光栅传感的复合材料板冲击载荷方法,利用EMD分解后的应变信号进行相关性分析并结合BP神经网络算法提出了一种基于光纤光栅传感的复合材料板冲击载荷定位方法,提高了计算速度,同时获得了较高的定位精度。
本发明公开了一种T1‑MRI成像引导下的光动治疗剂制备方法,首先制备钆(锰)‑卟啉金属有机框架结构的纳米粒子;再制备蛋白质/磺胺嘧啶复合物;将纳米粒子与复合物混合制备牛血清蛋白/磺胺嘧啶‑钆(锰)卟啉纳米复合材料,将纳米复合材料在T1‑MRI成像引导下的光动效应即为光动治疗剂;该T1‑MRI成像引导下的光动治疗剂具体为蛋白质/磺胺嘧啶‑钆(锰)卟啉金属有机框架结构复合材料的制备,所制得的复合材料生物相容性较好,细胞毒性低,MTT测试证明此复合材料在660nm激光光照下可以触发光动效应,而杀死肿瘤细胞。同时,所制得的复合材料是很好的T1‑MRI造影剂,可用于肿瘤的筛查及引导光动治疗,此复合材料在肿瘤的治疗方面具有极大的潜在应用价值。
本申请公开了一种耐腐蚀泡沫水泥夹芯板,其包括夹芯板本体,夹芯板本体包括复合材料层和水泥层,水泥层铺设在复合材料层的两面,复合材料层与水泥层之间设置防水层,复合材料层上设置有用于使得防水层紧密贴合在复合材料层和水泥层之间的加固机构。本申请具有通过加固机构使得两侧的防水层紧密贴合在复合材料层与水泥层之间,使得复合材料层的两面都被防水层包裹着,当夹芯板本体砌成墙体时,在潮湿的环境下尽可能避免当墙体上的夹芯板本体浸入水,从而尽可能避免夹芯板本体中的复合材料层被水浸入从而可能出现腐蚀的现象的效果。
本发明提供一种p‑n异质结型氧化铜‑氧化钨材料及制备方法与应用,属于功能材料、光催化材料制备技术领域。一种p‑n异质结型氧化铜‑氧化钨材料,由单斜晶系的氧化铜纳米颗粒负载在六方晶系的氧化钨纳米线表面而成,包括以下步骤:(1)将乙酸铵、二水合钨酸钠、聚乙烯吡咯烷酮、乙酸溶解得混合溶液,进行水热反应,得到氧化钨纳米线;(2)将氧化钨纳米线、铜源、氨水加入水中,在冰水浴搅拌条件下加入硼氢化钠,得到氧化铜‑氧化钨复合材料。通过冰水浴法成功合成了p‑n异质结型的氧化铜‑氧化钨复合材料,复合材料化学式为CuO‑WO3,所制备的复合材料中氧化铜纳米颗粒均匀的负载在氧化钨纳米线的表面,形成有效接触,稳定性高。
本发明涉及一种生物降解材料的制备方法。一种微波制备魔芋葡甘聚糖接枝聚酯的方法,其特征在于包括如下步骤:1)按魔芋葡甘聚糖与聚合单体的质量比为2∶1-1∶300,催化剂的质量为聚合单体质量的0.01-2%,选取魔芋葡甘聚糖、聚合单体、催化剂放入反应器中;2)然后混匀,抽真空,将保持真空环境的反应器放入微波炉中反应,反应功率100-600瓦,反应时间2-20分钟;3)从微波炉中取出反应器,用水冷却至50℃以下,使反应停止,得复合材料;然后,用溶剂将得到的复合材料溶解,得质量浓度为20-60%的复合材料溶液;4)按溶剂与沉淀剂的体积比为1∶4-8,将复合材料溶液加入到沉淀剂中沉淀,抽滤,将沉淀物干燥,得魔芋葡甘聚糖接枝聚酯。本发明具有成本低廉、易降解、环保、工艺简单的特点。
本发明涉及一种生物降解材料的制备方法。一种全生物降解材料的制备方法,其特征在于:包括如下步骤:1)按天然高分子材料与聚合单体的质量比为1∶49-2∶3,催化剂的质量为单体质量0.01-2.5%,选取天然高分子材料、聚合单体、催化剂;将天然高分子材料、聚合单体和催化剂放入容器中;2)然后将天然高分子材料、聚合单体和催化剂在容器中混匀,抽真空,将保持真空环境的容器放入微波炉中反应,反应功率100-500瓦,反应时间2-20分钟;3)取出,冷却,得复合材料,然后用溶剂将得到的复合材料溶解,得复合材料溶液;4)用沉淀剂沉淀复合材料溶液,将沉淀物洗涤干燥,得全生物降解材料。本发明具有成本低、环保、工艺简单的特点,得到的材料可完全生物降解并可直接加工成型或作为其它共混材料的增容剂。
一种提高可交联聚合物的压电陶瓷与聚合物及铁磁材料复合材料或压电陶瓷与聚合物复合材料的压电性能和磁电性能的方法,复合材料中可交联聚合物为聚偏氟乙烯、聚乙烯、环氧树脂、酚醛树脂、不饱和聚酯树脂、橡胶、尼龙,其特征是采用化学交联或辐射交联的方法使线性聚合物形成交联结构,化学交联方法是在压电陶瓷、铁磁材料和聚合物中加入交联剂或引发剂,进行混合、热压成型;辐射交联方法是,将压电陶瓷、铁磁材料和聚合物进行混合、室温冷压成型,在辐射源的照射下,使复合材料中聚合物交联。
一种氧化钨纳米线与介孔碳纳米复合材料及其制备方法,属于新能源材料领域。本发明的纳米复合材料中,客体材料WO3纳米线直径为10~100纳米,长度为300纳米~7微米,贯穿或分布在主体材料介孔碳纳米材料的孔道内或表面。其制备是以孔径可调的介孔碳为纳米限域反应器,含钨离子的酸或盐作为钨源,通过超声液相浸渍法,在保护气体中控温生长纳米线,得到WO3纳米线与介孔碳纳米复合材料。本发明可以制备一种一维与二维纳米复合粉体材料。本发明的制备工艺简单,对设备要求低,可操作性好,同时降低了纳米复合材料的生产成本;对于钨氧化物这类过渡金属氧化物,在低温下就可以实现主-客体装载,避免了在高温处理的过程中可能导致的孔道坍塌和价态变化。
本发明涉及一种生物降解材料的制备方法。一种聚多糖纳米粒子接枝聚酯的制备方法,其特征在于包括如下步骤:1)按聚多糖纳米粒子与聚合单体的质量比为1∶500-3∶2,催化剂的质量为聚合单体质量0.01-2.5%,选取聚多糖纳米粒子、聚合单体、催化剂放入容器中;2)然后在容器中混匀,抽真空,将保持真空环境的容器放入微波炉中反应,反应功率100-500瓦,反应时间2-20分钟;3)反应完后取出,用自来水冷却至50℃以下,使反应停止,得复合材料,然后,用溶剂将得到的复合材料溶解,得复合材料溶液;4)用沉淀剂将复合材料溶液中的聚合物沉淀出来,将沉淀物洗涤干燥,得产品。本发明具有成本低、环保、工艺简单的特点,得到的材料可完全生物降解并可直接加工成型或作为其它共混材料的增容剂。
本发明公开了一种基于水溶性石墨烯量子点/聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)复合材料的记忆存储器件及其制备方法。本发明的记忆存储器件是由下电极、旋涂在下电极上的水溶性石墨烯量子点/聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)复合材料作为存储器件的有机记忆存储层、沉积在有机记忆存储层上的上电极组成。通过调控复合材料中石墨烯量子点的含量,可调控基于该复合材料的存储器件的存储类型,开启电压和开关电流比。本发明工艺简单,实验条件温和,还可通过柔性基底电极构造柔性存储器件。
本发明涉及一种二次锂电池正极复合材料,尤其是涉及一种含氧空位硅酸亚铁锂与碳复合材料,其化学式为Li2FeSiO4-xNy/C,其中0
本发明属于注塑制品成型领域,并公开了一种碳纤维增强的多层结构注塑制品的制备方法及其产品。(a)通过静电粉末喷涂工艺制备碳纤维增强层和连接层;(b)将碳纤维增强层和连接层叠放,最上层为连接层,叠放后热压成型碳纤维增强复合材料;(c)将碳纤维复合材料置于模具中膜内注塑,获得所需的制品。本发明还公开了该制备方法制备的产品。通过本发明,利用热压工艺低成本高效率获得高粘度材料复合材料板,并且结合模内注塑工艺获得多层复合材料结构,节省了昂贵材料开支并且可以起到表面装饰的作用,与同厚度的电子工程塑料相比,机械强度更高。
本发明涉及一种摩阻材料及其制备方法。一种酚醛树脂/蛭石纳米复合基摩阻材料,其特征是它是由酚醛树脂/蛭石纳米复合材料、碳纤维、钢纤维、硫酸钡、高岭土、二氧化硅、硅灰石、碳酸钙、石墨、二硫化钼、丁腈橡胶和六次甲基四胺原料制备而成,各原料所占质量份数为:酚醛树脂/蛭石纳米复合材料10~20,碳纤维1~5,钢纤维2~5,硫酸钡15~20,高岭土1~5,二氧化硅1~8,硅灰石1~15,碳酸钙1~15,石墨3~10,二硫化钼2~5,丁腈橡胶2~12,六次甲基四胺0.8~2。由于酚醛树脂/蛭石纳米复合材料具有热分解温度高、韧性好的优点,以该酚醛树脂/蛭石纳米复合材料作为粘结剂制备的摩阻材料具有耐热性能好、摩擦系数稳定、热衰退性小、磨损率低等优点。
本发明是一种改善热塑性塑料成型工艺性与性能的方法,具体是:利用相对少量的可光固化交联单体、低聚物、光引发剂和光敏剂与大量的热塑性塑料进行共混,由此降低混合体系的粘度,来改善热塑性塑料及其复合材料的成型工艺性与性能;按重量份数计,该热塑性塑料及其复合材料由以下原料制成:热塑性塑料60~95份;可光固化交联单体为丙烯酸酯类单体,5~20份;低聚物为环氧齐聚物,5~20份;光引发剂1~4份;光敏剂0.5~2份。本发明能够改善和提高热塑性塑料及其复合材料的性能,该技术将导致热塑性塑料及其旋转模塑制品、复合材料制品、粉末涂层和注射与挤出制品在性能和应用上的重大突破,可促进新型复合材料的发展。
中冶有色为您提供最新的湖北武汉有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!