本发明公开了一种从工业级碳酸锂提纯制备电池级碳酸锂的方法,是将工业级碳酸锂与水混合成浆料,匀速搅拌中逐滴添加有机酸将碳酸锂转化为可溶性澄清液体,再将尿素的水溶液加入其中,调节pH值至10左右,并控制温度在80℃-100℃之间,使尿素缓慢释放出CO2气体从而沉淀出碳酸锂。本方法综合了甲酸锂重结晶法和尿素沉淀法的优点,汲取尿素均相沉淀法中使用尿素水解产生的CO2作为甲酸锂重结晶法中CO2气体的来源,避免结晶析出过快的局部反应,生成的碳酸锂颗粒大,不宜发生二次聚集,颗粒内不含溶液体系的杂质离子,提高了产品纯度,有效去除杂质离子,降低了生产成本。同时使用工业级碳酸锂为原料,比起尿素均相沉淀法使用的精制氢氧化锂,精简了生产工序。
一种高功率型钛酸锂锂离子电池涉及锂离子电池制造技术领域,尤其涉及一种高功率型钛酸锂锂离子电池。采用正极活性物质为尖晶石锰酸锂、材料进行过体相掺杂及表面包覆处理,采用负极活性物质为钛酸锂‑石墨烯、纳米钛酸锂‑二氧化硅复合的一种或两种,隔膜采用PP/PE复合隔膜,电解液成分为:内含有机溶剂,溶于有机溶剂的锂盐,及添加剂。高功率型钛酸锂锂离子电池经过正负极片制备、正负极片叠片、并芯包、铆接盖板、入壳、激光焊、烘烤、注液、高温化成、高温陈化、抽气封口、分容、即得成品单体。
本发明涉及一种富锂烟尘制备电池级碳酸锂的方法,属于碳酸锂制备领域。本发明所述方法包括:将富锂烟尘在无水乙醇中进行浸出,过滤后得到富锂溶液和滤渣;向富锂溶液加入氨水,过滤沉淀得到净化锂液;向净化锂液中加入络合剂除钙;向净化锂液中通入二氧化碳,反应结束后过滤得到粗碳酸锂;向得到的粗碳酸锂中加入去离子水并通入二氧化碳,反应结束后过滤得到碳酸氢锂溶液;将碳酸氢锂溶液加热并搅拌,反应结束后过滤得到电池级碳酸锂产品;该方法无需加入强酸强碱且无额外杂质离子的引入,工艺简单,可操作性强,易于规模化生产应用。
发明提供了一种从废旧钴酸锂电池正极材料中回收碳酸锂、氧化钴的方法,属于冶金行业的二次资源回收技术领域。本发明对废旧钴酸锂电池回收氧化钴和碳酸锂提供了一种全新的思路,在真空热分解过程中,真空热分解的温度较低,真空条件下没有空气二次氧化的问题,清洁无污染,提供了针对废旧锂离子电池回收的氧化钴、碳酸锂真空热分解温度和保温时间的选择依据,同时还具有工艺流程短、反应温度低、过程能耗低、密闭体系对环境基本没有影响等优点。
本发明涉及一种锂离子电池钛酸锂负极材料的制备方法,属于锂离子电池技术领域。本发明将锂源和钛源加入到去离子水中混合均匀,再加入分散剂混合均匀得到混合浆料;在温度为70~90℃搅拌条件下,混合浆料恒温反应1~3 h,然后喷雾热处理得到球形钛酸锂前驱体;在空气氛围中,将球形钛酸锂前驱体匀速升温至温度为700~900℃并恒温烧结3~20h,冷却即得钛酸锂负极材料。本发明方法制备的多孔球形钛酸锂具有高比表面积,有助于活性材料与电解液的充分接触,锂离子在其中扩散路径较短,减小了材料在充放电过程中的浓差极化,极大提高了电池放电比容量和循环稳定性。
本发明公开一种由锂矿石制备锰硅合金并富集锂的方法,将锂矿石、碳质还原剂、锰源、钙质添加剂破碎后进行配料,混合料加入到密闭矿热炉中进行高温还原反应,在矿热炉的烟尘净化系统中收集富锂灰、出铁口得到锰硅合金、出渣口回收富氧化铝渣;本发明具有工艺流程简单、成本低、资源综合利用率高、无环境污染和固体废弃物排放等特点。
本发明提供了一种从废旧钴酸锂电池正极材料中回收金属锂、钴的方法,所述的方法包括:将氯化胆碱与乙二醇混合,得到低共熔溶剂,将得到的低共熔溶剂与废旧钴酸锂电池正极材料混合,高温焙烧并控制焙烧时间,得到焙烧产物;将焙烧产物水浸、固液分离,得到含锂浸出液和水浸渣;将含锂浸出液经过蒸发结晶,得到Li2CO3固体;水浸渣在含氧气氛中煅烧,得到Co3O4粉末。本发明工艺流程简单、能够在较低温度条件下回收锂、钴,金属回收率高、对环境友好。
本发明公开一种废旧锰酸锂电池制备磷酸锰锂/碳正极材料的方法,废旧锰酸锂电池正极材料按照磷酸锰锂的化学计量比,补加所需元素,并加入碳源,将混合物在分散介质中机械活化形成纳米级前驱浆料;所得到的前驱浆料40~150℃进行干燥处理,再在惰性气氛下于400~800℃条件下烧结2~10h,即得到磷酸锰锂/碳正极材料;本发明所制备的材料为纳米级,颗粒粒度分布均匀,结晶度高,在磷酸锰锂颗粒表面形成均匀的碳导电网络;本发明避免浸出再回收过程,可将废旧锰酸锂电池正极材料直接转化为高性能磷酸锰锂/碳正极材料,过程简单、适用性强,产品性能优异,可有效地实现废旧锰酸锂电池的回收再用。
本发明公开了一种高性能铝掺杂富锂尖晶石锰酸锂正极材料制备方法。该方法包括如下步骤:按照分子式Li1.05Al0.05Mn1.90O4的锂、锰和铝离子摩尔比1.05 : 1.90 : 0.05,准确称取锂盐、锰盐和铝盐于烧杯中,用适量蒸馏水在50℃搅拌溶解形成均一混合溶液后,搅拌下逐滴加入氧化剂,保温5‑15min。在100℃条件下恒温加热使溶液蒸发掉一定体积的水分,并转移至瓷坩埚中。将盛有溶液的瓷坩埚置于150℃的程序升温箱式电阻炉中保温加热5min,然后在400℃空气气氛下燃烧反应30‑60min,最后在500℃保温1‑2h,冷却后研磨。将研磨后的粉末在600‑700℃焙烧并保温3‑6h,再次研磨得最终产物。本发明所制备的正极材料具有较高的结晶性,规则的八面体形貌,均一的颗粒尺寸分布,优异的循环稳定性和倍率性能。此制备方法工艺简单、成本低廉,为产业化打下良好的基础。
本发明提供一种锂离子电池磷酸锰锂基正极材料的制备方法,属于锂离子电池电极材料技术领域。在室温下,金属盐与磷酸盐发生固相反应制得与磷酸锰锂结构具有相似性的高活性纳米级磷酸金属铵,然后与锂源和碳源均匀混合后在保护气氛下烧结得到LiMnPO4基材料。室温固相反应所得纳米级磷酸金属铵,反应活性高,同时磷酸金属铵的结构与磷酸锰锂的结构具有相似性,与锂源充分混合接触后通过烧结,锂离子可以快速扩散与磷酸金属铵中的铵离子快速交换并发生简单的结构重排后即可生成小尺寸磷酸锰锂基材料。本发明的制备方法具有原料来源广泛,制备工艺简单实用,高效、低成本,并且可以降低烧结温度和缩短制备时间,从而提高生产效率和节省材料生产成本的优点。
本发明公开一种连续处理金属锂废渣回收金属锂的方法及装置,将锂渣经漏网滤去多余油分至表面仅覆盖一层较薄油膜后,将金属锂废渣置于恒温炉中,进行恒温蒸馏,氯化钾及其余杂质组分残留于恒温炉底,挥发物通过连接管道直接进入处于低温的控温冷凝炉,进行控温冷凝,纯度较高的金属锂流入金属锂回收罐中;本发明采用连续蒸馏的方式使锂渣中油和杂志与金属锂分离,回收金属锂;该方法可取代传统锂渣水消化/富氧燃烧‑盐酸化‑熔盐电解回收金属锂方法,该方法具有工艺流程简单、耗时短、锂的回收效率高、环境友好、安全性高等特点。
本发明涉及一种从废旧锂离子电池正极材料浸出废液中回收锂的方法。本发明采用硫酸调节废旧锂离子电池正极材料浸出废液的pH值至5以下,然后加热至温度为60~90℃进行减压浓缩得到含锂富集液;采用氢氧化钠调节含锂富集液的pH值至10以上,超声搅拌,静置后固液分离得到三元沉淀和含锂处理液;三元沉淀经洗水洗涤得到纯三元沉淀和含锂洗涤液;含锂洗涤液与含锂处理液合并为含锂精处理液;在超声振荡条件下,向含锂精处理液中加入饱和碳酸钠溶液沉淀剂进行沉淀反应,并保持沉淀悬浮直接过滤,得到碳酸锂沉淀和尾液;尾液蒸发结晶得到硫酸钠与碳酸钠;碳酸锂沉淀经水洗得到纯碳酸锂和水洗液,纯碳酸锂干燥得到Li2CO3‑0产品,水洗液返回配制饱和碳酸钠沉淀剂。
本发明涉及一种液相法包覆锂离子电池正极材料锰酸锂的方法,属于锂离子电池技术领域。将金属氧化物的酸式盐配成液,进行高速搅拌得到溶胶,然后将溶胶按照锰酸锂与金属氧化物酸式盐混合后加入到高速搅拌的分散剂和螯合剂中,充分混合后得到的混合物干燥破碎过筛;将过筛后的混合物在空气流中分两段烧结,烧结完毕后随炉冷却,破碎过400目筛,即得到包覆改性后的锂离子电池正极材料锰酸锂。本发明对合成设备要求低,操作简单,烧结工艺无特殊要求,包覆效率高,环境友好,是一种工业化的生产方法。
本发明公开了一种回收利用过期废药复方硫酸亚铁制剂和旧锂电池中废锂箔的方法,属于新能源材料技术领域,本发明将过期废药复方硫酸亚铁制剂和旧锂电池中的废锂箔以LiFePO4/C的形式加以回收,然后以LiFePO4/C为电极活性材料制成电极片,在无水无氧条件下组装成扣式模拟锂离子电池,并测试其电化学性能;本发明变废为宝,工艺简单,为过期废药复方硫酸亚铁制剂和旧锂箔的回收利用提供了新途径和新方案,降低了过期废药复方硫酸亚铁制剂和旧锂箔对环境造成的生态危害,促进了循环经济和可持续战略的发展。
本发明提供一种负公差轧制棒线材的方法。采用该方法轧制提高冷飞剪定尺率,提高剪切精度,提高了成品质量。本发明通过以下技术方案实现。
发明的目的在于提供一种两步化学气相沉积法制备石墨烯的方法,该方法采用聚合物固态碳源,常压下通过两步化学气相沉积法在铜基底上生长高质量石墨烯的方法,铜基底包括铜粉或铜箔等任意形状的纯铜制品。
中冶有色为您提供最新的云南昆明有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!