本发明涉及少齿差增速的减重增效降成本的系列风力发电机组,属于新能源技术领域。此风力发电机组的核心创新装置‑‑少齿差增速装置主要包括输入装置、内啮合的齿轮和输出曲轴。内啮合的一对少齿差齿轮为增速装置的关键零件。输入装置和输出曲轴的配合使用,使输入轴和输出轴的轴心位于同一直线上。本发明涉及的风力发电机组采用少齿差传动,和现有的安装直齿传动和行星齿轮传动的风力发电机组相比,具有减重、增效、降成本的特点,可完全替代现有的风力发电机组。本发明中风力发电机组的应用可大幅增加传动比,减少发电机头部重量,大幅减少机舱的吊装成本,取得明显的经济效益,应用前景极为广阔,可形成由小到大不同功率的系列发电机组。
本发明嵌入式自动联动跟踪太阳能与风能混合发电站,属于新能源发电技术领域。具体涉及一种嵌入式自动联动跟踪太阳能与风能混合发电站,本发明包括风能发电系统和太阳能发电系统,风能发电系统和太阳能发电系统并联后通过充电控制器与蓄电池连接,风能发电系统包括风力涡轮和风能发电机,风力涡轮和风能发电机连接在一起,太阳能发电系统包括太阳能电池板、支架和联动机构,支架上部为U形架,U形架上部设有转动轴,转动轴上安装太阳能电池板,转动轴的下部与联动机构连接,本发明适用于太阳能和风能发电技术领域。
本发明属新能源技术领域,为解决过渡金属硫化物作为锂电池负极材料时,固有体积膨胀效应和导电性能差的问题。提供一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法。铜盐水浴共沉淀方法合成四面体Cu2O固体前驱体,所得Cu2O固体与硫源混合,利用溶剂热法、得到中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料。所得中空结构过渡金属硫化物,能为其体积膨胀提供缓冲空间,同时保证较高的比容量;在0.2 A/g的初始首圈比容量为1135 mAh/g,首圈库伦效率为101%,循环250次以后,依然保持875 mAh/g的比容量。工艺简单、安全、成本低、可重复性好。
一种太阳能广告灯箱,属于市政公共平面照明领域,它包括太阳能板,广告灯箱和触摸屏,其特征是:长方体形广告灯箱箱体(2)左下角开设长方形窗口,窗口上部安装触摸屏(6),窗口下部安装柜体(7),柜体(7)内安置无线信号接收器和蓄电池,箱体(2)内部安装日光灯(3),太阳能板(5)通过支架(4)与箱体(2)相连,箱体(2)由支座(1)支撑。通过导线(8)将日光灯(3)、触摸屏(6)、太阳能板(5)以及无线信号接收器与蓄电池相连。本发明一方面利用太阳能转化的电能供电,可以合理利用自然新能源,保护自然环境;另一方面,可以为城市外来人员提供方便的导航,指导其到目的地的最佳换乘方式,本发明特别提供一种太阳能广告灯箱。
本发明为一种卷对卷制备大面积微纳米结构发电机薄膜的方法,解决了现有制备微纳米结构发电机薄膜的方法存在工艺复杂、产品面积受尺寸限制等问题。该方法首先将碳纳米管和压电颗粒按比例混入到液态PDMS制成可塑性聚合物,然后将可塑性聚合物放置于压印装置内并依次通过初步成型、压印、固化定型步骤在可塑性聚合物上压印得到微纳凹凸结构,最后对可塑性聚合物溅射电极即制备得到了微纳米结构发电机薄膜。本发明方法工艺简单、成本低、可重复性好,可实现快速、批量制作出大面积、厚度和成分均匀的柔性薄膜材料。本发明为实现微能源的集成化、规模化、商业化,对于新能源开发、可再生能源重复利用奠定了基础。
本发明提供一种低绕组匝数高电压变比平面变压器,包括两片铁芯和五个绕组;其中一片铁芯为平面五磁柱铁芯,包括一个大磁柱和四个完全相同且并排放置的小磁柱,一个大磁柱的横截面积等于四个小磁柱的横截面积之和;另一片铁芯为平面“I”形铁芯;一个原边绕组绕在大磁柱上,四个带中间抽头的副边绕组分别绕在四个小磁柱上;平面“I”形铁芯置于平面五磁柱铁芯的上面;本发明的有益效果是:以最少的原、副边绕组匝数,实现变压器的高电压变比和大电流输出,用于大数据中心、新能源发电系统和电动汽车供电系统的核心部件‑高电压变比LLC谐振变换器,可以扩大容量、减小体积、降低成本、提高效率、节约能源、减少排放。
本发明公开了一种利用垃圾充填废弃井巷并制取生物质能源的方法,属于生物技术与煤炭资源综合利用领域。本发明是一种将生物技术结合生物质垃圾和废弃井巷两大资源进行产甲烷的方法,首先筛选城市垃圾和农林业垃圾,然后利用生物技术分别培养产氢产乙酸菌菌落和产甲烷菌菌落;选择煤体保存完整的废弃巷道,将分类后的垃圾和菌落放入废弃井巷中,再向井巷中注入垃圾浆液和水,封闭使填充的巷道形成一个密封装置,利用生物发酵产出甲烷。本发明利用生物质垃圾充填废弃矿井,既可以解决废弃矿井空间和土地资源的浪费,又可以利用微生物法还原煤炭中大分子有机物生产甲烷从而获取新能源,缓解环境压力。
本发明专利涉及一种基于蒙特卡洛模拟的配电网光伏最大消纳方法,该方法利用配电网具体参数以及相关模型,对配电网光伏最大消纳量进行获取,并对光伏消纳过程中脆弱性节点进行分析,提高光伏最大消纳量。首先,采用蒙特卡洛模拟技术对配电网光伏接入进行选址定容模拟,之后利用Matpower潮流计算程序,获取各节点电压情况。通过不断提升光伏容量,探寻节点电压越线容量。其次,分析光伏最大消纳容量下配电网节点电压越线情况,获取脆弱节点,通过对光伏逆变器进行控制,提高配电网光伏消纳能力。该方法,缓解了配电网对新能源接入容量严格限制的问题,避免配电网中光伏接入脆弱节点,一定程度提高配电网光伏消纳能力。为国家清洁能源战略提供有力支撑。
一种液态空气动力系统,属于新能源领域,它采用液态空气为动力源,通过新型多级高压气化器对液态空气进行气化,使液态空气形成稳定的高压空气,高压空气导入空气发动机,使空气发动机进行做功运行;所述新型多级高压气化器由第一泵、第二泵、气化器、高压热交换器、单向阀组成。第一泵输入端连接液态空气储存罐,第一泵输出端通过单向阀连接气化器输入端;气化器输出端连接第二泵的输入端,第二泵输出端通过单向阀连接高压热交换器的输人端,高压热交换器的输出端通过单向阀、减压阀连接空气发动机。本发明采用液态空气为储能介质,能量储量高,续航能力强;液态空气特殊的稳定形态,无爆炸风险,安全性高;液态空气补充快,循环使用方便。
本发明涉及新能源技术领域,且公开了一种可以自动清理内壁岩屑的地热水流通管道,包括管道,所述管道的内部设置有承接块,所述承接块的右侧穿插设置有转动螺杆,所述转动螺杆的右侧固定连接有转轮,所述转轮的侧面穿插设置有离心杆,所述离心杆远离轮心的一侧固定连接有刮板,所述离心杆靠近轮心的一侧固定连接有空气弹簧,所述挡水轮的表面设置有滤屑板,所述通水箱的内壁固定连接有振动杆,两个所述通水箱相对的一侧穿插设置有连动杆。该可以自动清理内壁岩屑的地热水流通管道,通过转轮与滤屑板的配合使用,从而达到了在地热水内浓度达到一定程度时,阻止岩屑附着在管道内壁避免管道内壁产生岩垢层的效果。
本发明多能源取暖制冷及热水供应一体化系统,属于供热工程技术领域;所解决的技术问题是提供一种太阳能与生物质锅炉结合的取暖制冷及热水供应一体化的系统,结构简单,成本低廉且节能环保;采用的技术方案是:太阳能集热装置的水箱通过管道与保温水箱、吸附式制冷系统和生物质锅炉连通且三个管道上都有通过智能化中央控制系统自动化控制的温度感应器,吸附式制冷系统与水空调相连通,水空调的排水口通过回水管道与太阳能集热装置的水箱相连通,保温水箱的排水口通过管道与回水管道相连通,生物质锅炉的出水口分别与保温水箱、超导暖气片和吸附式制冷系统相连通,超导暖气片的出水口与回水管道相连通;本发明是一种家庭生活所用的新能源供热系统。
本发明涉及新能源工程机械领域,具体涉及一种串联式重度混合动力工程机械传动系统及其控制方法,该系统包括机械传动系统、电气连接系统和控制系统,发动机输出轴与离合器相连,ECU系统分别与发动机、离合器、液压系统、电动发电机、电机控制器、动力电池、电动机、变速箱等系统连接。ECU系统实时采集信号进行数据分析处理,结合工程机械自身工况特点,制定模糊逻辑控制策略,规划发动机、电动发电机及电动机的工作模式,解决在线实时自适应性和鲁棒性控制问题。
本发明公开了一种采用螺旋杆传动的气动发动机,属于新能源气动发动机领域。该装置包括螺旋杆传动机构和大缸径气缸两部分,螺旋杆传动机构位于气缸上方,螺旋杆传动机构包括两头螺纹旋向相反的螺旋杆,齿轮,单向轴承,螺栓,单向轴承的内圈和螺旋杆的外螺纹接触,单向轴承的外圈由螺栓固定在齿轮的侧端面,螺旋杆受活塞的推拉运动,螺旋杆的上下移动分别通过单向轴承对齿轮作用使其对输出轴做功。本发明降低了储气罐内气压变化对发动机输出的影响,同时利用大气压做功,提升了压缩空气的能量利用率,提高了气动发动机的经济性和效率。
本发明属于新能源发电与并网技术领域,具体涉及一种双馈风力发电机组的无功协调控制方法;采用技术方案为:S1:建立DFIG等效电路模型,分析DFIG定子和网侧换流器暂态特性和无功调节机理,确定无功调用优先级;S2:根据步骤S1中的暂态特性和无功调节机理对比定子侧和网侧换流器的动态模型和稳态效果,确定DFIG定子和网侧换流器的无功调节能力;S3:根据DFIG定子和网侧换流器的无功调节能力,制定DFIG无功的控制策略;本发明最小限度的降低了机组出力,提高了机组的无功出力极限。
本发明属于电力系统调度自动化技术领域,尤其涉及一种考虑风电与负荷预测不确定性的鲁棒调度方法,包括:用相关系数矩阵法来描述输入的负荷波动和风电出力的预测误差的相关性,并采用Cholesky分解法将具有相关性的随机变量转化成相互独立的随机变量矩阵;采用非参数核密度估计来构建风电出力和负荷波动的预测误差的概率密度模型;将直流潮流模型引入到电力系统调度模型并以系统总的调度运行费用最低为该模型的目标函数,建立在不确定因素的情况下的目标函数与约束条件;采用Benders分解法来求解鲁棒SCUC问题的UC主问题、基本场景下UC主问题的网络安全校验子问题、新能源发电与负荷的不确定场景下的网络安全校验子问题。
本发明的有源无源混合型无功功率动态补偿装置,属电力设备技术领域。装置由自耦耦合变压器、有载调压开关、无功功率补偿滤波支路、有源补偿逆变器、有源补偿逆变器控制器、后台数据处理工控机和有载调压开关控制器构成。装置的显著特点是在运行中的响应速度是有源补偿逆变器的响应速度,≤10毫秒。装置在运行中的有功功率损耗是自耦调压型无功功率动态补偿装置的有功功率损耗,≤装置额定容量的0.5%。可广泛适用于煤矿、钢铁、新能源(风力、太阳能)变电站和铁道电气化牵引变电所,作为无功功率动态补偿、高次谐波电流滤波、母线电压调整装置,为提高电力系统电压质量和电力系统运行经济性做贡献。
本发明公开了一种通过连续催化热解提高油页岩热解油品质的方法及设备,属于新能源技术领域。所述方法是利用超临界CO2和双金属催化剂对油页岩进行初次热解,热解挥发物通过带有加热套的管道进入二次热解系统。利用催化剂溶于超临界水对热解挥发物进行二次热解。超临界CO2具有强大扩散系数、粘度低和萃取有机质能力强的特性,抑制了焦炭与气体的形成,降低了热解油的粘度,实现了油页岩热解油品质的初次提升;超临界水有强大的酸碱催化作用和驱替作用,充分溶解催化剂并提供加氢活性位点,实现了对油页岩热解油品质的连续提升。
本发明涉及一种考虑风光出力不确定性的充电站配置方法及系统,包括:获取电网历史年度运行数据以及多套充电站配置方案,确定各充电站配置方案对应的电源输出功率并确定功率平衡约束、各充电站配置方案对应的电网年化网损函数;根据交通网络拓扑确定各充电站配置方案对应的用户耗费时间函数;以电网年化网损和用户所需时间最小为上层目标函数,对上层多目标配置模型进行求解,得到上层最优配置方案集合,降低了电网年化网损和电动汽车用户充电耗费的时间;并基于下层校验模型,在各典型场景下对弃风弃光量约束中弃风量范围的上限和弃光量范围的上限进行迭代更新,使得弃风弃光量尽可能小,保证了风光新能源的消纳能力。
本发明涉及生物酶仿生化学和新能源材料领域,具体是含双苯基取代二硫桥的二铁六羰基化合物及含双苯基取代二硫桥的二铁二膦化合物的制备以及在催化制氢中的应用。含双苯基取代二硫桥的二铁六羰基化合物的化学式为Fe2{(μ‑SCHPh)2O}(CO)6,含双苯基取代二硫桥的二铁二膦化合物的化学式为Fe2{(μ‑SCHPh)2O}(CO)4{ĸ2‑P^P},其中双膦配体P^P分别为:dppp[(Ph2PCH2)2CH2]、dppe[(Ph2PCH2)2]、PCNCP[(Ph2PCH2)2N(CH2Ph)]。本发明实现了首次在二硫桥引入大位阻、富电子性的双苯基基团,同时又在二铁核引入供电子性的螯合双膦配体,并可通过二者间大的空间位阻和各自强的供电子性,构筑了二铁核的非对称性结构,进而更好地调节它们的产氢能力及催化活性。
本发明涉及新能源设备的技术领域,特别是涉及一种家庭供电用折叠式光伏太阳能发电板,包括方形固定框,所述方形固定框内设置有折叠组,所述折叠组由多张太阳能板组成,相邻两张太阳能板之间通过铰链转动连接;多张所述太阳能板通过铰链首尾连接,同时多张太阳能板拼接形状为波浪形;该结构可方便使太阳能板表面保持整洁,避免杂质对其表面造成遮挡并影响太阳能吸收效果,同时通过自动清理杂质,可有效降低清理难度,节省人工清理时的体力和时间,提高实用性。
本发明涉及新能源发电技术领域,且公开了一种根据风力强度调节发电量的风力发电设备,包括架体,所述架体的顶端转动连接有扇叶,所述扇叶的中心固定连接有转轴一,所述转轴一的左端通过锥齿轮组传动连接有转轴二,所述转轴二的底端外围固定连接有线圈绕组,所述架体的内壁接近线圈绕组的一侧固定连接有电磁铁。该根据风力强度调节发电量的风力发电设备,当风力增强时,离心叶转速加快使活动块移动,增大电磁铁内部电流,磁场强度增强使线圈绕组内电动势增大,增大单位时间内部转动发电量,随着转轴二带动抵接盘转动抵压抵块,在连杆三的传动下,塞体一挤压润液腔内部,阀体打开使润滑油浸润转轴二和架体连接处,减少磨损。
本发明属于微胶囊复合材料设计合成技术在电池热安全科学与工程中的应用领域,具体涉及一种微胶囊复合相变材料的制备,在新能源汽车动力电池热管理系统中的实际应用。该制备方法是将相变材料石蜡作为核材料,甲醇改性的三聚氰胺甲醛预聚体MMF作为壳材料,在分散剂苯乙烯‑马来酸酐共聚物SMA的作用下,进行乳液聚合反应,得到目标产物。结合设计开发的电池及散热片排列方式,可以直接应用于商业化的电池热管理系统中。本发明的优点:制备工艺简单,成本低廉,科技成果易转化,具有较高潜在经济价值,社会及生态效益突出。
本发明公开了一种二氧化锰/碳纳米管复合材料、制备方法和应用,属于能源材料技术领域。一种二氧化锰/碳纳米管复合材料,是由MnO2和C晶相构成的纳米棒,直径为10~60 nm,长度为100~800 nm。上述二氧化锰/碳纳米管复合材料的制备方法,是以含有高锰酸根的锰源和碳纳米管为原料,充分混合,在酸性环境中,通过水热合成法而制备的。本发明方法生产成本较低且绿色环保,所制得的二氧化锰/碳纳米管复合材料是由MnO2和C晶相构成的纳米棒,具有很多块体材料不具备的物理化学特性,不仅可以用作电池电极材料,还可以用作电容电极材料,在新能源材料领域具有广泛的应用前景。
一种利用多晶硅副产物制备镁硅基热电材料的方法,属于热电材料制备领域,具体而言是利用多晶硅副产物SiCl4制备Mg2Si新型热电材料的制备技术方案,特别是能够利用多晶硅有毒副产物制备出新型绿色能源热电转换材料。其特征在于利用多晶硅有毒副产物SiCl4先与溶解在有机溶剂四氢呋喃中的Mg2H反应生成SiH4气体,再将SiH4气体与Mg2H加热反应得到Mg2Si基热电材料。本方法的特点是原料来源丰富、工艺简单,制备出的Mg2Si热电材料具有较好的热电性能,不仅解决了多晶硅副产物SiCl4回收难的问题,而且降低了生产成本,减少了环境污染,提供了新能源材料的生产方法。
本发明公开了一种含氧缺陷Ru/W18O49光催化剂及其制备方法和应用,属于环境化工光催化新能源领域。本发明以氯化钨和三氯化钌为原料,以无水乙醇为溶剂,利用简单易行经济环保的醇解法制得了组成单一的含氧缺陷Ru/W18O49的光催化剂粉体,并应用于光催化分解水‑原位储氢领域,成功将储氢技术与光解水技术结合,在光解水的同时利用氢溢流现象实现对氢的原位捕获,从而不仅解决太阳能光解水制氢过程中的氢氧产物分离,同时所储存的氢可以直接转化利用,避免H2的运输和生成,减少安全隐患。解决了太阳能裂解水转换为氢能技术中氢气分离和安全存储运输两个瓶颈问题,对氢能的大规模应用以及环境治理和绿色能源利用具有重要意义。
本发明属于新能源汽车技术领域,具体涉及一种压缩空气和动力电池组合动力系统及使用方法。包括气罐,气罐内部通过纵板支撑有电池筒,电池筒内部表面覆盖有一层石墨烯发热膜,石墨烯发热膜由制动能量回收系统供电,电池筒内部设置有电池组单元,气罐上设置有用于充入压缩空气的进气阀以及用于排出高压气体的排气阀,排气阀通过气路与气动马达总成连接,气动马达总成依次通过主减速器、差速器与车轮连接,气动马达总成将动力传递给主减速器、差速器把动力分配给车轮行驶;所述的电池组单元与永磁同步电机连接,永磁同步电机通过减速器与电子差速器总成与车轮连接。
本发明涉及生物酶仿生化学和新能源材料领域,具体是含不同二硫桥基的胺基双膦螯合取代铁铁氢化酶模拟物及光化学合成法与应用。所述模拟物更为全面地化学模拟了天然铁铁氢化酶催化活性中心的三类含不同丙撑基二铁二硫蝶状骨架的基本结构和催化功能。本发明的光化学合成法相比于常用的氧化脱羰法和加热回流法来说,其制备操作简便、反应条件温和、反应速率高效、产物单一且收率适中,可适合于制备多种双齿配体不对称取代铁铁氢化酶模拟物。
本发明公开了一种钴氮共掺杂碳基电催化剂材料及制备方法,本发明属于电化学和新能源领域。本发明以封装了金属钴离子的阴离子金属有机骨架为前驱体,在氮气气氛下,通过高温热解方法制备出钴氮共掺碳基纳米材料,该材料在碱性条件下具有优异的氧还原、氧析出和氢析出催化性能,利用该材料组装的可充电锌空气电池和全解水装置都具有良好的充放电性能和长久的稳定性。本发明制备工艺简单,催化剂性能良好,经济且可大量制备。
本发明提供的基于区块链的虚拟电厂综合能源管理方法和系统,包括以下步骤:利用分布式能源发电;基于区块链智能合约算法对所述分布式能源发电模块发电数据的交易信息加密后传输至大数据统计分析模块;对发电数据传输模块传输的加密信息解密后,实时计算分布式能源发电模块发电的电能、下游需电客户电能需求、储能需求;对分布式能源发电模块产电的部分电能进行储存备用;中央控制模块根据大数据统计分析模块的计算结果对所述分布式能源发电模块产电进行弹性智能负荷、电能输出和储电的电能分布进行分配产电。本发明实时跟踪各个分布式新能源发电模块的产电情况,有效保证能源的不间断供给,降低能源和电力系统的运营成本,提高系统的安全性。
本发明公开了一种针对单相LC型并网逆变器的分数阶控制方法,将分数阶PID控制器应用于单相LC逆变器控制策略中,使逆变器有更好的动稳态性能,大大降低了入网电流的THD;通过并网逆变器有效地将新能源的电能转换为可接入电网的交流电;考虑电容和电感的分数阶特性,设计分数阶双闭环控制策略;通过本发明,实现对逆变器的有效控制,有助于提升系统的鲁棒性。
中冶有色为您提供最新的山西太原有色金属新能源材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!