本发明属于高分子材料技术领域,涉及一种全生物降解PLA/PBAT复合材料及其制备方法。该复合材料由包括以下重量份的组分制成:聚乳酸10-90份,聚(对苯二甲酸丁二醇-co-己二酸丁二醇)酯10-90份,热塑性淀粉10-80份,相容剂A0.01-1.5份,相容剂B0.1-10份,填料1-40份。本发明所提供的复合材料的制备方法加工操作简单,产品制造成本较低,力学性能和柔韧性优异,完全生物降解,可广泛的应用于包装材料和一次性餐具等消费品领域。
本发明涉及一种功能化磁性银纳米线复合材料及其制备方法与应用,首先使用高温分解法合成一维的磁性银纳米线;采用原位聚合的方法将聚多巴胺、聚膦腈、二氧化硅或酚醛树脂包覆到磁性银纳米线表面,分别得到聚多巴胺包覆磁性银纳米线核壳复合材料、聚膦腈包覆磁性银纳米线核壳复合材料、二氧化硅包覆磁性银纳米线核壳复合材料或酚醛树脂包覆磁性银纳米线核壳复合材料。与现有技术相比,本发明的合成方法简单有效,产率高,试剂消耗少。制得的聚多巴胺包覆功能化磁性银纳米线核壳复合材料具有较好的核壳形貌,磁场感应性好,特异性强,吸附容量大,在环境等领域有良好的使用价值和应用前景。
本发明提供了一种有机/无机复合材料及其制备方法和在义齿制作中的用途,所述复合材料包含主体原料和辅料,其中主体原料为热固性丙烯酸酯类聚合物与氧化锆陶瓷粉;本发明的复合铸造蜡模料由二步本体聚合法制备得到。本发明提供的复合材料硬度介于热固性丙烯酸酯塑料与氧化锆陶瓷之间,具有耐磨、韧性好、生物安全性高等特点,经机械精密加工后,可作为软骨、义齿、关节、以及非结构性人造骨材料使用。
本发明公开了一种纳米零价铁/碳纳米管/沸石杂化介孔分子筛复合材料的制备方法。本发明的具体步骤如下:(1)单独将沸石,或者将硅源及铝源的混合物于碱溶液中充分混合后,90?140℃温度下制得沸石前驱体;(2)将沸石前驱体、硅源、铝源和C16TMABr于碱溶液中混合,制备得到水凝胶;(3)将纳米零价铁和碳纳米管加入到水凝胶中,制得混合凝胶;(4)将混合凝胶依次进行晶化处理和高温煅烧处理即制得纳米零价铁/碳纳米管/沸石杂化介孔分子筛复合材料。本发明制备过程简单,灵活性高;将沸石引入介孔分子筛的孔壁,并且添加纳米零价铁和碳纳米管,能有效提高复合材料分离和降解有机污染物的效率。
本发明公开了一种工业废弃物回收技术领域的利用废弃印刷电路板制备木塑复合材料的方法,将经过破碎和分选后获得的废弃电路板非金属材料作为原材料,代替部分木粉用于生产木塑复合材料。将热塑性塑料25-35份,废弃电路板非金属材料颗粒15-40份,木粉30-60份,接枝相容剂2-4份,润滑剂1-2份,偶联剂0.3-0.6份经过计量、混合和塑炼制成便于成型的木塑粒子,然后将木塑粒子送入挤出机进行挤出成型,经冷却定型后切割成型。本发明既可以解决废弃电路板非金属材料的处置及污染问题,也可以降低木塑复合材料的生产成本。
本发明提供了一种乙丙橡胶/蒙脱土纳米复合材料的制备方法。这种乙丙橡胶/蒙脱土纳米复合材料的组成为乙丙橡胶、蒙脱土、插层剂、硫化活性剂、促进剂及硫化剂。首先在30~120℃的加工温度下将乙丙橡胶、蒙脱土和插层剂加入到密炼机中进行混炼,然后在30~100℃下将上述混炼胶加入密炼机中并加入硫化活性剂、促进剂及硫化剂,在剪切混合过程中,插层剂和乙丙橡胶分子会原位发生插层,结果使蒙脱土的层间距明显扩张,最后将混炼胶在140~200℃下进行硫化,即得到插层型的乙丙橡胶/蒙脱土纳米复合材料。本发明所提供制备方法的加工工艺简单,无需在混炼前对蒙脱土进行有机改性,并可大幅提高乙丙橡胶的力学性能和热稳定性。
本发明属于纳米技术领域,具体涉及一种碳纳米管接枝玻璃纤维多尺度增强体增强聚酰亚胺复合材料的制备方法。本发明将碳纳米管经过纯化后,再进行羧基化后,得到表面接有羧基的碳纳米管,再将羧基化的碳纳米管均匀分散在有机溶剂中与玻璃纤维反应,得到玻璃纤维表面接枝有碳纳米管,再将表面接枝有碳纳米管的玻璃纤维浸入偶联剂溶液中处理,得到碳纳米管接枝改性功能化玻璃纤维的多尺度增强体;然后利用此多尺度增强体与聚酰亚胺进行加成反应,生成多尺度增强体增强的聚酰亚胺树脂复合材料。本发明反应步骤简单,利用碳纳米管的强度和韧性强韧化玻璃纤维,改善玻璃纤维与树脂基体的粘结性能,提高复合材料的界面粘结强度。可以广泛应用于航空航天、交通运输、风力发电以及机械电子等领域。
本发明涉及一种负电阻温度系数复合材料及其制备方法和应用领域。所述的负电阻温度系数复合材料,其组份的质量百分比分别为:60%~80%的基体聚合物、5%~20%的导电填料、10%~20%的非导电填料和1%~5%的助剂,其中基体聚合物为熔融温度在100℃~150℃范围的热塑性高分子材料。其制备方法简单,即将所有组份混合挤出造粒即可。本发明所述的负电阻温度系数复合材料NTC特性明显,且柔软,具有足够的强度,除用作浪涌保护器、点温度探测器等一般用途外,还可以应用在大面积温度场的连续监测和要求柔软的场合,并且加工和使用都十分容易。
本发明涉及一种聚苯胺/硅复合材料的制备方法,其特征是,在弱酸性溶液中使正硅酸乙酯(TEOS)在无机酸掺杂的导电聚苯胺表面发生水解缩合,制备自分散型导电聚苯胺/硅复合材料。该复合材料的特点是具有良好的导电性和热稳定性,且不需要再借助任何分散剂就可以分散在无水乙醇或水介质中,并形成稳定的分散体系。它即可以和许多水溶性或醇溶性的高分子材料共混,并通过铸涂或蒸发的方法制备出性能优异的导电高分子薄膜,也可以作为填料制备具有抗静电或防腐功能的涂料。本发明阐述的制备方法简单易行,对环境无污染。
本发明公开了一种具有网络结构纳米陶瓷增强相的铁基表面复合材料的制备方法,所述方法是燃烧合成反应技术和激光熔覆技术的有机结合。本发明的制备方法可制备表面致密、具有网络结构纳米陶瓷增强相的大面积、大尺寸的铁基复合材料,且所制备的复合材料的硬度可达基材硬度的2~3倍,磨损体积可达基材磨损体积的1/6~1/4,耐磨性可达基材耐磨性的4~6倍。本发明的具有网络结构纳米陶瓷增强相涂层为原位自生,涂层与基体的结合为冶金结合,因此本发明还具有工艺简单、节能、涂层纯度高、微观组织致密良好等优点。
本发明涉及一种水性聚合物、多异氰酸酯和秸秆纤维复合材料及其制备方法。该复合材料的组成及质量百分比如下:秸秆纤维83.0-90%,水性聚合物9.0-14%,多异氰酸酯交联剂0.5-2.0%,无机填料0.5-1.0。具体制备方法为:秸秆纤维的处理、水性聚合物主胶的配制、主胶与异氰酸酯交联剂的先后喷施、含胶纤维的铺装、常温预压和热压固化成型,最终制得水性聚合物—多异氰酸酯—秸秆纤维复合材料板材。本发明方法制得的板材不仅具有较高的胶合强度、断裂韧性和耐水性能,绿色环保,且工艺简单,纤维板成本较低,具有良好的市场前景。
本实用新型公开了一种金属和复合材料结合电池箱的连接密封结构,包括电池模组、复合材料壳体、压板和多个连接结构,所述电池模组位于所述复合材料壳体和所述压板之间,所述复合材料壳体和所述压板通过多个所述连接结构进行固定,从而将所述电池模组进行固定,通过设置所述连接结构,以对所述电池模组进行连接和密封,防止所述复合材料壳体的安装点位置在冲击、振动下容易开裂,造成密封和连接失效,从而提高金属和复合材料结合电池箱保持密封的能力和连接的可靠性。
本发明提供一种基于路径规划算法的复合材料寿命预测方法,包括步骤:S1:通过对复合材料失效过程的分析,获得复合材料的疲劳裂纹扩展特性;S2:根据疲劳裂纹绕过加强基扩展的特点,建立模拟复合材料中随机颗粒分布的模型,引用Dijkstra算法,模拟裂纹扩展过程的最短路径模型;S3:通过残余应力模型计算残余应力,考虑残余应力修正试件所受载荷的应力比;S4:构造初始裂纹模型得到初始裂纹大小与延伸速率;S5:对Paris公式进行修正;S6:利用修正后的Paris公式对复合材料进行寿命预测;S7:验证寿命预测的准确性。本发明的一种基于路径规划算法的复合材料寿命预测方法,可以更准确地预测复合材料的疲劳寿命。
本发明公开了一种纳米碳材料/PPS/弹性体复合材料及其制备方法,先将石墨烯、碳纳米管复配,经研磨得纳米碳材料复配体;然后将纳米碳材料复配体分散于对二氯苯熔体中,经原位聚合反应制得纳米碳材料/PPS纳米复合材料;将纳米碳材料/PPS纳米复合材料与弹性体及相关助剂置于双螺杆挤出机中,经挤出和切粒,得纳米碳材料/PPS/弹性体复合材料。本发明采用纳米碳材料的复配体,使得其更容易在PPS基体中形成三维网络结构,从而易于形成导电通道,制备出抗静电、电磁屏蔽、导电、导热PPS复合材料;弹性体的加入,使得复合材料在获得以上性能的同时,还能保持良好的力学性能,具备优良的综合性能,并且制备工艺简便,适合工业化大规模生产,所制备的PPS复合材料更适合用于5G、6G通信领域。
一种锂离子电池负极用高比容量的硅碳复合材料及制备方法,属于锂离子电池领域。其特征在于所述的复合材料由含硅类储锂材料作为主要活性物质存在于复合材料中,以及具有储锂容易、可逆嵌脱锂性能的碳作为活性材料的分散载体,复合材料通式为Si-C-X,活性物质与分散载体高温固相反应后含硅活性材料的含量为10%-50%(wt),制备出的复合负极材料的比容量大大高于目前普通使用的碳类负极材料,循环寿命远优于合金体系,可望在电动车等方面具有潜在应用前景。
本发明公开一种具有分级结构的高导热金属基复合材料及其制备方法,其特征在于,至少一种纳米增强体与金属基体构成第一级复合材料(复合材料-I),进而,至少一种微米增强体与复合材料-I构成第二级复合材料(复合材料-II),其中,纳米增强体选自石墨烯、碳纳米管、碳纳米纤维、纳米石墨片、纳米金刚石,至少有一维方向的尺寸为1-100nm;微米增强体选自金刚石、碳化硅、硅,等效粒径为30-600μm。本发明制备的复合材料热膨胀系数低且可调控,热导率高,可用作各类热管理材料。
本发明涉及一种无卤阻燃永久抗静电聚丙烯复合材料及其制备方法,其复合材料由以下重量配比的原料制成:聚丙烯40-70%、抗静电剂5-15%、相容剂1-8%、阻燃剂5-30%、抗氧剂0.1-0.5%、润滑剂0.1-0.5%。其制备方法包括按重量配比称取原料;将所有原料放入高混机中混合2-5分钟;出料;将混合均匀的原料放入双螺杆挤出机挤出造粒。与现有技术相比,本发明制备的无卤阻燃永久抗静电聚丙烯复合材料具有优异的阻燃特性,1.6mm阻燃V0级,永久抗静电,表面电阻1010Ω,且力学性能良好,既满足了产品要求阻燃性能,又大大改善了复合材料的表面电阻,达到良好抗静电级别。
本发明公开了一种以纳米碳酸钙水浆料、表面处理剂、苯乙烯为原料,制备离子键结合型纳米碳酸钙/聚苯乙烯复合材料的方法,其过程如下:将纳米碳酸钙从水相转移到有机相,经具有聚合反应活性的表面处理剂离子交换反应包覆处理后,再转移到苯乙烯单体中;通过常规自由基引发聚合反应,即可得到离子键结合型的纳米碳酸钙/聚苯乙烯复合材料;其组分重量百分比为:纳米碳酸钙1~70%,表面处理剂0.1~10%,聚苯乙烯20~98.9%。这种复合材料可直接用于成型制品,也可作为母料与其它聚合物共混制作新的复合材料。
本发明涉及锑化钴基热电复合材料及制备方法。 其特征在于复合材料是以CoSb3 或 BayCo4Sb12为基体,式中0≤y≤ 0.44,加入小于100nm的纳米颗粒在高温固相反应温度范围内 不与基体反应,加入量为基体的0-8wt%,通过原位扩散使纳 米颗粒均匀分布在基体内。所述的纳米颗粒为BN、 C60、 Si3N4或 Ba6C60中的一种。其制备方法是先制备复合粉体,然后SPS快 速烧结,本发明提供CoSb3复合 材料的热电转换性能指数比基体提高了30-50%, BayCo4Sb12基复合材料的ZT值 在850K时达到1.5。热电转换效率可达15%,具有良好实用 前景。
本发明属于材料制备技术领域,涉及一种预浸料模压复合材料成型工艺,为了解决现有成型工艺制备的复合材料表面容易产生针孔、色差等问题,本发明提供了一种复合材料成型工艺,该工艺至少增加了在复合材料表面添加保护膜的步骤,从而至少能够解决上述问题。
本发明的一种100升碳纤维缠绕铝内衬复合材料气瓶,包括缝铝内衬、安装底座、粘接层和碳纤维复合材料层;安装底座与无焊缝铝内衬构成光滑平整的缠绕芯模;芯模外部缠绕碳纤维复合材料层;芯模与碳纤维复合材料层之间安装有粘接层,牢固连接无焊缝铝内衬和碳纤维复合材料层,该复合材料气瓶容积大、耐高压、效率高、质量轻、安全性高、成本低、制造周期短,同时本发明还提出了该碳纤维缠绕铝内衬复合材料气瓶的制造方法。
本发明提供一种复合材料零件的成型方法,包括以下步骤:第一步:利用表面处理技术在成型模具表面制造微米级别的微结构;第二步:采用复合材料成型工艺,将聚合物纤维和树脂混合并在成型模具中进行加热、加压固化,形成复合材料零件,使微结构直接在复合材料零件的表面成形。本成型方法通过在复合材料零件的表面制造微结构,提高了复合材料零件的胶粘强度;将复合材料的固化成型过程和胶粘连接前的表面预处理过程相结合,省去了对复合材料零件的表面预处理工艺步骤,节约了胶粘连接工艺的时间和成本,适用于多种复合材料的成型工艺。
本发明属于耐高温尼龙复合材料领域,涉及一种玻璃纤维增强聚对二甲酰癸二胺复合材料及其制备方法,该复合材料由包含以下重量份的组分制成:PA10T100份、玻璃纤维25-100份、硅烷偶联剂0.2-1.0份,热稳定剂0.3-0.7份、润滑剂0.5-1.0份、扩链剂0.5-2.0份、支化剂0.5-5.0份。本发明提供的PA10T/GF复合材料,通过控制扩链剂与支化剂的添加比例,实现了该复合材料在改性过程出现轻微交联,后期的注塑成型过程中进行深度交联,可使该复合材料由热塑性直接转变为热固性,大大提高了其力学性能,与不添加扩链剂和支化剂的PA10T/GF复合材料相比具有更高的力学强度和更低的吸水率。
本发明涉及一种Lyocell纤维/聚乳酸复合材料及其制备方法,按重量百分比,该复合材料组成为50~99%聚乳酸和1~50%Lyocell纤维。制备方法包括:将聚乳酸和Lyocell纤维在高分子加工设备中熔融共混,制得Lyocell纤维/聚乳酸复合材料,该复合材料经注塑或模压成型后进行热处理,可大大提高其耐热性能。该发明制得的Lyocell纤维/聚乳酸复合材料是一种真正意义上的绿色复合材料;使用废弃后的复合材料在自然环境中能完全降解,属于环境友好型材料,并在餐饮、汽车等领域具有广泛的应用价值。
本发明公开了一种导电聚丙烯复合材料,按以下重量百分比的原料配制成:聚丙烯60~89%,线性低密度聚乙烯5~15%,导电炭黑5~20%,偶联剂0.05~3%,抗氧剂0.1~1%,其他助剂0~1%。本发明在聚丙烯复合材料的基础配方中添加一种能够有效地提高导电性能的助剂,从而制备出导电性能更好的聚丙烯复合材料。本发明的优点是:1、本发明使用适量导电炭黑在复合材料体系中,使得所制得的聚丙烯复合材料具有更好的导电特性。2、本发明所制得的聚丙烯复合材料在保证材料导电性能的同时,材料的各项物理力学性能基本不受影响。3、本发明提出的改善聚丙烯复合材料导电性能的方法制备工艺简单、无环境污染。
本发明涉及一种复合材料孔隙率检测标块及其制备方法,所述的孔隙率检测标块是将不同内外径、不同壁厚、不同材料的中空纤维进行两端封端,预埋进复合材料中,保证中空纤维的中空度,以中空纤维的中空作为复合材料的孔隙,模拟复合材料孔隙缺陷,这样就达到已知复合材料孔隙的目的,按照不同的基体,不同的增强材料,选择不同的铺层方式,通过真空辅助成型制备复合材料孔隙率标块,以满足实际检测中多样化的需求;用超声技术对复合材料标块进行扫描,验证试块孔隙率分布的均匀性、孔隙率的相对大小,再与真实孔隙缺陷的超声衰减信号进行对比分析,结合已知复合材料的孔隙,为复合材料孔隙率超声检测提供一种真实有效的比对与评价基准。
本发明涉及一种树脂传递模塑成型复合材料孔隙率检测标块及其制备方法,所述的孔隙率检测标块是将不同内外径、不同壁厚、不同材料的中空纤维进行两端封端,预埋进复合材料中,以中空纤维的中空作为复合材料的孔隙,模拟复合材料孔隙缺陷,这样就达到已知复合材料孔隙的目的;按照不同的基体,不同的增强材料,选择不同的铺层方式,通过树脂传递模塑成型制备复合材料孔隙率标块,以满足实际检测中多样化的需求;用超声技术对复合材料标块进行扫描,验证试块孔隙率分布的均匀性、孔隙率的相对大小,再与真实孔隙缺陷的超声衰减信号进行对比分析,结合已知复合材料的孔隙,为复合材料孔隙率超声检测提供一种真实有效的比对与评价基准。
本发明提供了一种尼龙复合材料及其制备方法和应用,该尼龙复合材料包括:长玻璃纤维增强尼龙材料、SiO2气凝胶微球、发泡剂和抗氧剂;该尼龙复合材料的制备方法包括如下步骤:将长玻璃纤维增强尼龙材料进行干燥,得到干燥的长玻璃纤维增强尼龙材料;将干燥的长玻璃纤维增强尼龙材料、SiO2气凝胶微球、发泡剂和抗氧剂混合,搅拌得到混合物;将混合物加入双螺杆挤出机中熔融挤出,经处理得到该尼龙复合材料;该尼龙复合材料用于作为步枪护手。本发明制备的步枪护手的密度降低至0.84‐0.90g/cm3,从而达到了轻量化的目的;在其表面喷涂SiO2气凝胶微球改性涂料,提高了其隔热性能和耐高温性能,达到了实际的使用要求。
本发明涉及化学领域,具体涉及污染物处理。一种构建有机‑无机复合材料用于同步去除六价铬离子和苯酚的方法,其特征在于,包括以下步骤:制备共轭聚合物1,4‑二苯基丁二炔(PDPB);制备氧化石墨烯(GO);构建二元复合材料GO/PDPB;构建三元有机‑无机复合材料Au‑GO/PDPB;将三元有机‑无机复合材料Au‑GO/PDPB投入包含六价铬离子和苯酚的废水中,通过可见光照射同步去除六价铬离子和苯酚。由于三元有机‑无机复合材料Au‑GO/PDPB优秀的光捕获和有效的电子空穴空间分离能力,其在可见光下对于有机污染物和重金属离子的同步降解有着高的光催化活性。
本发明公开了一种可磁性回收的石墨烯/二氧化钛光催化复合材料及其制备方法。具体步骤如下:(1)制备聚丙烯酸修饰的四氧化三铁溶液;(2)制备石墨烯/二氧化钛光催化材料;再将其用水分散;(3)制备聚乙烯亚胺修饰的石墨烯/二氧化钛溶液;(4)利用静电自组装,将聚丙烯酸修饰的四氧化三铁溶液和聚乙烯亚胺修饰的石墨烯/二氧化钛溶液常温孵化,离心,得到磁性四氧化三铁修饰石墨烯/二氧化钛复合材料;(5)将上述复合材料热处理,得到可磁性回收的石墨烯/二氧化钛光催化复合材料。本发明制备的光催化复合材料可见光催化降解活性高,光催化表面大,通过调控四氧化三铁的自组装含量,可以实现在复杂环境中的有效回收。
中冶有色为您提供最新的上海有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!