本实用新型提供一种用于动力型软包锂电池模块的极耳连接装置,主要由模块座、导电板及压板组成,在模块座上镶嵌有不锈钢板,不锈钢板的表面开设有若干个细长的电池极耳穿孔;压板扣在不锈钢板上,通过螺钉、弹簧垫圈、平垫与模块座及导电板固定连接。本装置可使电池组单体连接紧密牢固组装方便,完全避免了锡焊所造成的高温对于电池芯内部所造成的影响,实现了单体动力型软包锂电池模块化需要,可以适应不同数量的电芯的并联组装。
本实用新型公开了一种锂离子电池极片,所述极片上固定有多个极耳,各极耳伸出极片的长度随着该极耳离极片卷绕起始点距离的增加而增长。本实用新型还公开由上述结构的极片组成的锂离子电池电芯。由于采用不同长度的极耳,有效地避免了处在电芯内层极片上的极耳与处在电芯外层极片上的极耳不能很好连接在一块的可能,节省了材料,且增加了连接的牢固性。
本实用新型公开了一种锂电池无氧裂解破碎回收用正负极粉回收装置,属于正负极粉回收装置技术领域。一种锂电池无氧裂解破碎回收用正负极粉回收装置,包括进料筒,还包括:固定连接在所述进料筒一侧的回收筒,所述回收筒设有第一腔室、第二腔室;分别开设在所述进料筒另一侧的第一安装口、第二安装口,所述第一安装口、第二安装口呈上下排布;本实用新型通过将分解机分解出的物料投进进料筒中,随后第一筛网、第二筛网通过颠簸震动对物料进行筛选,筛选出的金属颗粒和正负极粉通过第一筛网、第二筛网的倾斜,进入到回收筒中分类进行回收,该装置结构简单,筛分效果好,筛分效率快。
本实用新型公开了一种锂硫电池组的散热保温结构,包括装置柜,所述装置柜的底部固定连接有两个对称设置的用于保持装置柜稳定的支撑块,所述装置柜的内部设有多个用于存放锂硫电池组的储物机构,所述装置柜的内部设有多个圆腔,所述圆腔的内部设有用于给储物机构散热的通风机构,所述装置柜的前端通过连接轴转动连接有多个盖板,多个所述盖板的内部设有用于卡紧盖板的弹性机构。本实用新型结构合理,可以在锂硫电池组长时间放电发热后及时的对其进行降温,提高了电池的放电效率。
本发明涉及电池材料技术领域,尤其涉及一种负极活性材料及其制备方法、负电极和锂离子电池。本发明提供的制备方法,包括以下步骤:将Li2CO3、La2O3和TiO2混合后,依次进行预烧结和烧结,得到Li0.5La0.5TiO3。利用上述方法制备得到的Li0.5La0.5TiO3在电化学过程中具有本征的快速离子迁移速度,同时可以高倍率快速充放电,其作为一种嵌入脱出机制的材料在电化学过程中不发生相变,能够保证在长时间循环过程中可以保持良好的晶格稳定性进而具有优秀的循环性能。
本发明涉及了一种锂离子电池隔膜预处理方法,其特征在于:采用在高分子隔膜表面进行两步预处理方法,(1)高分子表面氧化偶联处理方式,首先采用氧化剂进行氧化处理,然后采用偶联剂A进行偶联反应;(2)锚定无机物前躯体预处理方式,采用偶联剂B进行界面反应,提高无机离子与高分子的结合能力,其具有更强的吸液/保液能力、耐热冲击性能等突出优点,以其为隔膜的锂离子电池具有电解质离子电导率高,电池整体循环性能优越,安全性能高等优点。
本发明提供一种锂离子动力电池用正极FeF3复合材料的制备方法,制备的FeF3为三维有序大孔结构,其表面被导电高分子均匀包覆。本发明采用聚苯乙烯作为硬模板合成三维有序大孔结构,然后通过原位聚合的方法实现导电高分子的包覆。与传统的碳包覆相比,这种新颖的包覆方法既不需高温条件,也不产生二氧化碳,具有低成本、环保等优点。FeF3三维有序大孔结构与导电高分子包覆的双重结合使得其作为锂离子电池负极材料具有较高的放电容量和良好的循环稳定性。
本发明的氯化锂熔盐法制备氧磷灰石结构硅酸镧电解质材料粉体属于固体氧化物燃料电池的技术领域。以氧化镧和氧化硅的混合物为原料,以氯化锂为熔盐;将原料与熔盐混合并加入无水乙醇进行球磨;球磨后烘干,再在750~800℃的温度下烧结4~12个小时;烧结后的样品用去离子水洗涤,烘干得到氧磷灰石结构硅酸镧电解质材料粉体。本发明制备工艺简单,温度低,无污染,成本低;大大降低了粉体的合成温度,明显减小了制备过程的能源损耗,降低了对设备的高性能依赖;制备出来的La10Si6O7电解质材料粉体粒径小,分布均匀。
本发明提供一种锂空气电池正极材料及其制备方法,属于电化学能源材料技术领域。该方法是将泡沫金属用稀的酸溶液洗涤并剪切成电极片,然后浸入硝酸盐溶液中;将酚醛树脂溶液与碳酸盐或硝酸盐同时加入到氧化石墨溶液或膨胀石墨溶液中,搅拌形成溶胶凝胶混合物溶液;将得到的溶胶凝胶混合物溶液滴加到侵有电极片的硝酸盐溶液中,然后放入烘箱中烘干,最后在惰性气氛中煅烧得到的。本发明的锂空气电池正极材料孔径为20~100nm,应用该正极材料组装成的扣式电池首次放电比容量达到8000mAhg-1以上。
本发明属于一种提高锂电池加工质量的方法,将由多个正极片、负极片、隔膜交替叠加而成的电芯正极极耳和负极极耳分别用铝夹片和铜夹片粗包扎后放在定位板定位后,用塑料方块分别敲击铝夹片和铜夹片、使其夹紧并且敲出定位孔痕迹,然后在铝夹片包扎的正极极耳上和铜夹片包扎的负极极极耳痕迹处上进行冲孔,将正极耳和负极耳通过冲得的孔用不锈钢螺丝分别连接在正极柱和负极柱上。本发明不仅有效地降低的电池的废品率、解决电池一致性差的问题,而且大大的降低了工人的劳动强度,同时还可以提高大容量锂离子的安全性和寿命,且方法简单,制作经济,降低生产成本;产业化生产易于实现,有广泛的应用前景。
本发明公开了一种以硅藻土为原料制备多孔硅/石墨烯复合锂离子电池负极材料的方法,其特点是,包括硅藻土纯化、多孔硅制备和多孔硅/石墨烯复合材料制备步骤,其制备方法科学合理,简便易行、成本低廉、环境友好,实用性强,原材料来源广泛,且充分利用了石墨烯优异的导电性和良好的机械性能,有效改善了硅基材料的导电性和体积效应等问题,直接用于锂离子电池负极材料,在电流密度为100mA/g下,经过100次循环后,可逆容量仍可达609.4mAh/g。
聚丙烯酸长链烷基酯/硅酸锂镁纳米复合相变乳胶粒子分散液及其制备方法与应用,属于相变材料技术领域。解决了如何提供一种相变温度可调,相变焓值高的聚丙烯酸长链烷基酯/硅酸锂镁纳米复合相变乳胶粒子分散液及其制备方法的问题。本发明的制备方法,先将LaponiteXLS溶于去离子水中得到Laponite水分散液,将去离子水、单体和Laponite水分散液混合,得到预乳液;然后将引发剂溶于NaOH的去离子水溶液或去离子水中,得到引发剂溶液,最后将引发剂溶液加入得到的预乳液中反应,得到复合相变乳胶粒子分散液。该方法制备得到的相变乳胶粒子分散液相变温度可调,相变焓值高,可以与许多载体相混合,制备复合材料。
本发明提供了一种耐高压固态聚合物电解质及其制备方法和锂离子电池,属于锂离子电池技术领域。本发明提供的耐高压固态聚合物电解质在PEO体系中引入交联剂,PEO中存在‑EO‑的活性位点,交联剂与聚环氧乙烷在光引发下发生自由基交联反应,形成交联网络结构,增大了电解质的离子电导率;含双键结构的添加剂I的引入利用双键结构在引发剂的作用下发生聚合反应,增加了电解质的机械性能;含氰基的添加剂II的引入利用氰基与三元正极材料里的过渡金属相互结合,在正极表面形成一层保护层,防止过渡金属在高压充放电过程中发生分解致使电池容量损失,提高锂离子电导率。
本发明公开了一种硫化物量子点掺杂的高性能锂硫电池及其制备方法,属于电极材料制备技术领域,采用调控不同掺杂量的硫化物量子点与碳纳米管复合作为正极材料,得到优异循环稳定性和倍率性能的锂硫电池。量子点具有尺寸可调谐,比表面大,表面官能团丰富,离子与电子传输路径短,以及良好的分散性。将硫化物量子点溶解于有机溶剂中并通过负压搅拌、冷冻干燥的方法与碳纳米管复合得到CNT/CdS‑QDs材料。此材料进行载硫处理后可作为理想的锂硫电池正极材料。尺寸小且均一的CdS量子点会掺入到碳纳米管中空孔道内,形成大小不同的分割空腔,这些空腔有利于正极载硫量的提升。
一种锂硫电池隔膜的制备方法,包括合成多孔黑色二氧化钛、制备PB‑TiO2涂覆隔膜等步骤,本方法中制备的多孔黑色二氧化钛具有更高的比表面积,其目的在于利用多孔黑色二氧化钛高的比表面积和对多硫化物的吸附作用,通过物理和化学双重作用抑制飞梭效应,显著提高电池的放电容量,改善电池的倍率性能和循环稳定性。
一种锂离子电池荷电状态和健康状态联合估计方法,属于控制技术领域。本发明的目的是提出了一种联合估计动力电池系统SOC与SOH的方法,设计了双滑模观测器进行电池SOC和SOH联合估计,实现了动力电池可用容量和SOC在不确定性环境中的精确联合估计,使得估计结果更加稳定可靠。本发明建立了电池戴维南等效电路模型,基于所建立的电池模型,分析电池模型的可观测性,基于所建立的电池模型,进行了双滑模观测器的设计。本发明建立容量衰减的电池等效电路模型,提高了模型的准确性,考虑了锂离子电池在循环使用过程中的容量变化,提高了估算精度。
本发明锂属于离子电池领域,具体涉及一种低温锂离子电池。主要由电芯、极耳、极柱、绝热层、储热剂、外壳,防尘盖组成,电芯外设有绝热层,且引出电极延伸出绝热层外,极柱与引出电极借助螺栓连接在一起,电芯与绝热层封装在装有储热剂的外壳中,同时加入储热剂,绝热层和储热剂构成了电池的自加热系统,减少热量的散失,能够使电池在低温条件下迅速升温,使电池适合工作的温度。电池在低温的条件下能够正常工作,放电容量和放电能量可以分别达到室温的95%和90%以上,很好的解决了电池的低温问题。
本发明是一种硅藻土制备锂离子电池多孔硅碳纳米管复合负极材料的方法,其特点是硅藻土为硅源,包括:多孔硅的制备、多孔硅基体表面负载催化剂前驱体和多孔硅碳纳米管复合材料的制备等步骤,具有原料易得,价格低廉,制备的多孔硅形貌清晰,硅碳复合材料容量高、循环稳定,生产效率高,成本低,适合工业化生产等优点。用该材料制备锂离子电池负极,在100mA/g的电流密度下测试,首次可逆比容量高达1529.1mAh/g,循环40次后的可逆比容量为885.4mAh/g,后期循环容量几乎保持不变。通过倍率性能测试,当电流密度恢复到100mA/g时,可逆比容量恢复到800mAh/g左右,说明材料连接紧密性好。
本实用新型涉及一种防爆低内阻锂离子电池及超级电容器,该锂离子电池及超级电容器包括外壳、电池单体、散热板、塑料绝缘套、上盖、电极引出螺丝机构,所述相邻的两个电池单体之间设置有散热板,多个电池单体和散热板组装在一起构成的电池主体被设置在外壳内,塑料绝缘套套装在电池主体的上端,上盖设置在外壳一端塑料绝缘套上面,所述的电极引出螺丝机构通过塑料绝缘套和上盖连接于电极引出线上;所述的外壳的一侧带有接口。本实用新型具有结构简单合理,抗震能力强、内阻损耗小、使用寿命长、安全性好等优点。
本发明涉及一种硫化钴/二硫化钼核壳结构的锂电池负极材料的制备方法,属于纳米复合材料制备领域。首先通过水热反应制备出纯相的硫化钴(Co1‑xS),之后将其与一定量的钼酸钠、硫脲以及葡萄糖的溶液混合,再一次通过水热反应的方法使得二硫化钼均匀的包覆在硫化钴的表面,得到核壳结构的硫化钴(Co1‑xS)/二硫化钼复合材料。通过葡萄糖辅助水热的方法,使得制备的二硫化钼薄层中含有碳的存在,一定程度上提升了复合材料的导电性;同时二硫化钼的薄片包覆在硫化钴的表面,可以很好的改善硫化钴在充放电过程中的体积膨胀,有效的提升了复合材料的结构稳定性。该复合材料应用于锂电池负极材料时,表现出了良好的充放电容量以及循环稳定性。
本发明公开了一种耐热收缩的锂离子电池隔膜,该隔膜包括第一外层、第二外层和夹在二者之间的内层,所述第一外层、第二外层和内层具有不同的微孔结构。本发明提供的耐热收缩的锂离子电池隔膜具有优异的耐热收缩性,且兼顾多项理化性质,综合性能好,在达到较低厚度的同时具备高穿刺强度和拉伸强度,可应用于较小的电池且在安装过程中不易破损;同时具有良好的透气度和孔隙率,内阻小,提高电池的容量和循环性能;另外,还具有较低的闭孔温度和破膜温度,安全性高。
本发明适用于金属空气电池技术领域,提供了一种MOF@rGO气凝胶固态锂空气电池正极及制备方法,空气电池正极为类球形纳米颗粒紧密连接的三维多孔结构,MOF包括UiO‑67等具有离子传导能力的一类MOF,所述类球形纳米颗粒包括球形纳米颗粒和没有棱角的八面体纳米颗粒中的一种或多种,所述多孔结构由石墨烯气凝胶等具有优异导电性的导电基底提供。本发明中的MOF@rGO气凝胶固态锂空气电池正极,具有高离子传导性、高电子传导性和良好的化学/电化学/空气稳定性,解决了现有空气正极固态电解质材料和导电材料结合不紧密、离子/电子传导能力差、化学/电化学/空气稳定性较差等难题,为新型固态金属空气电池及其他储能系统开辟了新的方向。
本发明提供一种锂离子动力电池用负极Co(OH)2复合材料的制备方法,属于电化学能源材料技术领域。本发明采用Co(NO3)2·6H2O溶于乙醇中,加入氨水,将沉淀物离心洗涤后分散在适当溶剂中,将溶液放于反应釜中进行水热反应,自然冷却至室温,沉淀物离心洗涤,干燥后即得到Co(OH)2与Co3O4复合材料。本发明的目的在于克服纳米片之间的堆叠,电极材料与电解液接触不充分等缺点,提供了一种Co(OH)2与Co3O4复合结构。Co3O4纳米颗粒嵌入在片层Co(OH)2上,有效抑制了层与层的堆叠,提高了电解液与电极材料的浸润性,作为锂离子电池负极材料,表现出较好的电化学性能。
本发明属于材料化学与能源领域。特别涉及纳米碳与石墨碳混合材料的制备方法,以及混合材料在锂离子电池中的应用。该方法是将纳米碳和石墨碳按质量比溶于有机溶液中,混合均匀后蒸发溶剂得到混合材料。在有效利用纳米碳材料比表面积大、高导电性的特性的同时,小的纳米颗粒进入石墨大颗粒之间形成空隙之中,减小颗粒之间的空隙,使接触更加良好,电子导电性提高。以混合材料作电极的锂离子电池,与纯纳米碳材料电极相比,降低了电池成本;与石墨材料电极相比,提高了电池容量。该制备方法简单、安全,所得材料的比容量比石墨高,有良好的循环性能。可广泛应用于能源领域。
本发明涉及一种提高锂电池寿命的储能系统运行优化控制方法,其特点是:根据储能电池在不同充放电深度下的最大充放电循环次数实验数据,将电池寿命周期内不同充放电循环深度下可吞吐最大电量时所对应的充放电循环深度定义为电池的标准充放电循环深度;根据电池运行充放电循环深度偏离标准充放电深度的程度建立了一种电池在频繁且随机充放电场合下的寿命衰减程度评价指标。若采用单一电池储能系统完成平抑出力波动的任务,由于风电和光伏出力的随机性,则会使电池运行充放电循环深度远离标准充放电深度。基于此,设计了双电池储能单元主电路结构和协调控制策略,使得电池单元都尽可能运行在标准充放电深度,最大程度提高电池储能寿命。
本发明是一种以硅藻土为原料制备锂离子电池多孔硅二氧化钛复合负极材料的方法,其特点是,包括硅藻土的纯化处理、制备多孔硅、制备多孔硅二氧化钛复合负极材料等步骤,具有原料易得,科学合理,成本低,生产效率高,适合工业化生产,制备的多孔硅二氧化钛锂离子电池负极材料在100mA/g的电流密度下测试,其首次可逆比容量为1029.1mAh/g,50次循环后容量维持在680mAh/g左右,后期容量几乎保持不变,具有循环稳定性和安全性均高等优点。
本发明提供了一种硅‑碳纳米管球体的制备方法,包括:将分散溶液进行造粒,得到硅‑碳纳米管球体;所述分散溶液包括硅颗粒和碳纳米管。本发明提供了一种上述技术方案所述的方法制备得到的硅‑碳纳米管球体。本发明提供了一种电池负极,包括上述技术方案所述的硅‑碳纳米管球体。本发明提供了一种锂离子电池,所述锂离子电池的负极为上述技术方案所述的电池负极。本发明提供的方法制备的硅‑碳纳米管球体,通过将硅颗粒和碳纳米管进行复合,并通过造粒技术合成二次团聚球体,本发明提供的方法制备得到的硅‑碳纳米管球体克容量较高、电化学稳定性较好。此外,本发明提供的方法制备得到的硅‑碳纳米管球体的振实密度较高。
本发明提供一种锂离子电池用硫化锑基负极材料及其制备方法,涉及锂离子电池负极材料领域。该方法是采用机械球磨法将三氧化二锑、膨胀石墨和硫粉三者进行高速长时间机械混合形成复合材料,并在氩气中退火硫化后得到硫掺杂石墨封装硫化锑结构的硫化锑基复合材料。本发明中与硫掺杂的石墨材料及由膨胀石墨剥离出的石墨烯复合可以增加硫化锑的电子导电性,同时因球磨时硫粉的存在形成的封装结构有利于缓解因体积膨胀导致的硫化锑的团聚;它们共同作用极大提高初始库伦效率、转换反应的可逆性、循环稳定性和倍率性能。本发明的机械球磨法操作简单易行,便于大规模生产。
中冶有色为您提供最新的吉林有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!