本发明公开了一种锂电池回收用收集装置,包括固定座,所述固定座的顶部外壁固定有收集箱,且收集箱的一侧外壁位于底部的位置开有清理口,所述清理口的两侧内壁均插接有收集槽,且收集槽的一侧外壁固定有连接板,所述连接板的一侧外壁设置有把手,所述固定座的顶部外壁开有滚珠槽,且滚珠槽的内壁滚动连接有滚珠,滚珠与收集槽之间形成滚动连接,所述收集箱的顶部外壁开有进料口,且进料口相对的两侧内壁均固定有进料板。本发明能够防止由于锂电池发生破碎导致电解液泄漏使装置的内部受到腐蚀对锂电池的收集造成影响,能够防止锂电池浸没在液体里对锂电池的表面造成腐蚀,能够防止雨水渗透到装置的内部对锂电池造成腐蚀。
本发明公开了一种快离子导体和导电聚合物双重修饰的锂离子电池三元正极材料的制备方法。该材料是以锂离子电池三元正极材料为核心,快离子导体为第一包覆层,导电聚合物为第二包覆层,快离子导体为钒酸锂,偏铝酸锂,锆酸锂中的任意一种。先将快离子导体与三元正极材料混匀后研磨,然后用高温固相法将快离子导体包覆在三元正极材料上,之后将导电聚合物与包覆了快离子导体的三元正极材料混匀球磨,将导电聚合物包覆在快离子导体包覆的三元正极材料上,最终获得快离子导体和导电聚合物双重修饰的锂离子电池三元正极材料。本发明将快离子导体和导电聚合物结合起来对三元正极材料进行改性,使其既具有优异的循环性能,又具有良好的倍率性能。
本发明公开了一种用于扣式锂离子电池壳体的表面处理不锈钢带及其制备工艺,适用于扣式锂离子电池壳体材料。本发明选用430不锈钢带作为基底,在所述不锈钢基底的一面电镀三层不同晶粒尺寸的镍多层膜,使镀层的性能得到优化,从而得到具有良好耐腐蚀性能、冲压性能、导电性能的扣式锂离子电池壳体材料。本发明还提供了该材料的制备工艺,即:430不锈钢带经过除油活化,在其一面用直流电镀的方法电镀一层微米晶镍镀层,再用脉冲电镀的方法电镀一层纳米晶镍镀层,再用脉冲喷射的方法电镀一层纳米晶镍镀层,用蒸馏水清洗,烘干,最后除氢。
一种安全补锂复合负极极片及其制备方法,其中安全补锂复合负极极片包括负极极片本体、以及由内往外依次设置在负极极片本体正面的第一补锂层、第一陶瓷层;以及由内往外依次设置在负极极片本体反面的第二补锂层、第二陶瓷层。本发明还提供上述负极极片的制备方法。本发明提供的安全补锂复合负极极片,由于在涂有负极活性物质的负极极片本体正、反面分别涂上一层补锂层,再在两侧补锂层表面又分别涂敷一层陶瓷层,一方面,补锂层能补充首次充电过程消耗的锂离子,从而提高电池容量和首次充放电效率;另一方面陶瓷层避免补锂层与隔膜的直接接触,防止锂枝晶刺破隔膜,从而能提高电池的安全性能。
本发明公开了一种从锂离子电池电极废料中综合回收有价金属的方法,包括以下步骤:(1)将锂离子电池电极废料经酸浸‑除杂处理,得到含镍钴锰锂的净化溶液;(2)将含镍钴锰锂的净化溶液、沉淀剂和还原剂混合,选择性沉淀分离镍钴锰,得到镍钴锰沉淀渣和富锂溶液;(3)将步骤(2)中得到的富锂溶液采用双极膜电渗析法处理,得到氢氧化锂溶液和稀酸溶液;(4)将步骤(3)中得到的氢氧化锂溶液经蒸发浓缩处理,即得到浓缩母液和电池级单水氢氧化锂产品。本发明的方法,工艺流程简单、处理成本低、无三废排放,含镍钴锰锂的混合溶液中镍、钴、锰、锂的回收率均大于99%。
为克服现有双氟磺酰亚胺锂制备方法中存在活泼锂金属化合物易爆炸、产物杂质多以及反应水去除制程复杂的问题,本发明提供了一种双氟磺酰亚胺锂的制备方法,包括以下操作步骤:获取双氟磺酰亚胺;双氟磺酰亚胺和碱性锂源在可以与水形成共沸物的非水溶剂中混合反应,所述非水溶剂包括吡啶和氯乙醇中的一种或多种,过滤得到双氟磺酰亚胺锂粗品溶液,所述碱性锂源包括LiOH、LiHCO3和Li2CO3中的一种或多种;将双氟磺酰亚胺锂粗品溶液在真空度为1000Pa~100Pa、温度为30℃~80℃的环境下进行减压干燥,待产物呈浆糊状时,将真空度降低至10‑2Pa以下干燥,得到粗品双氟磺酰亚胺锂。本发明提供的双氟磺酰亚胺锂的制备方法反应过程安全可控,简化了产物中水分的分离过程。
本发明涉及镍钴锰酸锂正极材料及其制备方法和应用。锂离子电池正极材料通过含有锂镍钴锰半成品和高分子酸类聚合物的原料烧结而成,其中所述游离锂离子含量低于0.025wt%,所述锂镍钴锰半成品化学式为LixNiaCobMncO2,其中:0.95≤x≤1.08,0.32≤a≤0.58,0.05≤b≤0.34,0.2≤c≤0.46, a+b+c=1.0‑1.05。本发明的制备方法,包括以下步骤,将含有锂镍钴锰半成品、高分子酸类聚合物和根据需要加入的掺杂元素化合物的原料按计量比混合,经烧结、粉碎得到所述锂离子电池正极材料。本发明的制备方法工艺简单,制备的材料均匀性好,晶体结构完整,游离锂含量低,有利于锂电池电化学性能的提高,扩大锂离子电池的商业应用。
本发明公开了一种结构简单的锂离子电池极片快速安装结构,包括锂离子电池本体和安装在锂离子电池本体上的极片,所述锂离子电池本体的顶部开设有环形凹槽,所述锂离子电池本体顶部边缘的外侧开设有环形阶梯,所述环形阶梯的左右两侧壁均开设有容纳槽,所述环形凹槽的内部嵌套有挤压件,所述挤压件包括限位环块和挤压垫,所述限位环块和挤压垫均套接在极片主体的外侧,所述限位环块的左右两侧均开设有螺纹孔,所述锂离子电池本体的顶部边缘套接有防护套。本发明极片与锂离子电池本体之间安装结构简单,安装快捷方便,且安装稳定牢靠,同时能够将极片从锂离子电池本体上拆卸下来进行更换,无需更换整个锂离子电池,降低了损失。
本发明公开了一种高功率锂电池及其制备方法,涉及锂电池技术领域,该高功率锂电池及其制备方法,包括底板,底板上开有多个均匀分布的限位孔,底板的两侧均开有条纹槽,底板的两侧位于条纹槽上均设置有侧板,底板位于限位孔的周边通过胶水固定粘贴有锂电池,锂电池与锂电池之间设置有水冷装置,锂电池的顶部设置有盖板,盖板与底板的上均设置有电极片,条纹槽的底部设置有多个均匀分布的螺丝孔,侧板的底部设置有与条纹槽相对应的纹路,侧板与条纹槽之间限位设置,底板与侧板之间通过螺丝与螺丝孔螺纹连接进行限位固定设置。本发明可以将全部锂电池进行充分利用,使锂电池的功率达到最大化,并且通过水冷进行散热,散热效果好。
本发明公开了一种原位包覆纳米石墨烯膜的磷酸铁锂正极材料及其制备方法,以锂源、铁源、螯合膦源及氧化石墨烯为原料,利用水热反应,制备前驱体粉末,然后将得到的前驱体粉末气氛保护烧结获得一种原位生长石墨烯膜包覆的,具有核壳结构特征的纳米石墨烯膜/磷酸铁锂材料。此外,本发明还提供了所述的制备方法制得的纳米石墨烯膜/磷酸铁锂复合材料在锂离子电池正极中的应用。本发明所制得的产品中石墨烯原位生长并包覆于磷酸铁锂表面,形成具有原位合成效应、纳米效应以及核/壳结构特征的石墨烯膜/磷酸铁锂锂离子电池正极材料,该正极材料提高了锂离子电池的能量密度、高倍率充放电特性及循环性能,同时本发明所用原料成本低廉,工艺路线简单,适于大规模工业化生产和应用。
本发明公开了一种废旧电池中磷酸铁锂材料的绿色修复再生技术,具体包括以下步骤:1)废旧磷酸铁锂电池的前期处理,包括废旧磷酸铁锂电池中的剩余电量释放,包装和外壳拆解,正极、负极和隔膜的分离;2)对磷酸铁锂正极进行热处理,使电极材料磷酸铁锂与集流体铝箔之间分离;3)通过添加合适的锂、源铁源和磷源将锂、铁、磷的摩尔比调整为(1~1.1)∶ 1∶ 1,加入适量的碳源,经球磨后在惰性气氛中煅烧得到修复的磷酸铁锂正极材料。本发明不使用酸碱等腐蚀性化学品,不产生废液污染,工艺过程可实现零污染。本发明的回收工艺简单,成本低,回收利用率高,对于降低磷酸铁锂生产成本、节约资源、保护环境都能起到积极的作用。
本发明提供一种石墨烯包覆掺氟钛酸锂纳米线的制备方法及其应用,属于锂离子电池能源材料生产技术领域。本发明以成本低廉的工业级TiO2为原料,以水热法为基础,通过两步转换,将廉价的工业级TiO2转化为了具有特殊形貌的钛酸锂纳米线,大幅的降低了钛酸锂纳米线的形成成本,有利于工业化生产应用。同时本发明通过液相氟掺杂和石墨烯原位包覆钛酸锂纳米线,从形貌,离子掺杂以及石墨烯包覆三方面协同作用提高钛酸锂材料的导电率。所得石墨烯原位包覆掺氟钛酸锂纳米线具有接近理论值的充放电比容量,并且显著提高了材料的倍率性能。
一种软包锂离子电池模块,所述模块包括软包锂离子电池层单元、底板、上盖、紧固螺栓;所述软包锂离子电池层单元包括软包锂离子电池、框架、散热板,所述框架为矩形结构,由至少一个矩形腔体构成,所述散热板设有形状及数量与所述框架的矩形腔体数量相同的凹坑,所述散热板卡装在所述框架中,散热板上的凹坑陷入框架的矩形腔体中;所述软包锂离子电池设置在所述散热板的凹坑中,整体构成软包锂离子电池层单元;至少两个软包锂离子电池层单元沿厚度方向叠置通过紧固螺栓固定安装在底板与上盖之间,构成软包锂离子电池模块。电池的一个表面与散热板实现贴合,便于散热,框架上布置的散热风道增强了散热功能。软包锂离子电池层单元可以横向进行扩展,也可以多层叠压实现厚度方向的扩展,便于布置,具有结构紧凑,能量密度高的特点。
本发明涉及动力电池领域,尤其涉及一种激活磷酸铁锂梯次电池容量的方法。包括一种激活磷酸铁锂梯次电池容量的方法,具体步骤如下:S1:用小电流对所述电池进行周期性充电和放电;S2:使放电截止电压为U0;S3:对所述电池进行周期性温度循环。通过对退役再进行梯次利用的动力电池进行小电流充放电后再温度循环,可以激活电池内的沉积锂和半沉积锂,进而有效提升1%~10%的容量。同时可以重整电池内的残余电解液,使电芯极片再次浸润,有效降低内阻,增加循环寿命。
一种多孔磷酸锰钒锂复合正极材料及其制备方法,所述多孔磷酸锰钒锂复合正极材料的分子式为Li3-2xMnxV2-2x(PO4)3-2x,其中,0<x<0.4;所述制备方法包括以下步骤:(1)将锂源化合物、钒源化合物、磷源化合物和锰源化合物加入去离子水中,然后加入草酸进行超声搅拌反应0.5~2h,得混合溶液;(2)将步骤(1)所得混合溶液进行真空冷冻干燥12~36h,得固体粉末;(3)将步骤(2)所得固体粉末在保护气氛中,于500~800℃下,焙烧6~10h后,随炉冷却至室温,即得多孔磷酸锰钒锂复合正极材料。本发明方法制作过程简单,成本低廉,所制得的多孔磷酸锰钒锂复合正极材料电化学性能优异。
本发明提供了一种预锂化剂、制备方法及其用于制备电容器的方法,预锂化剂制备方法包括将将锂盐与钴盐溶于溶剂中搅拌均匀,再加温搅拌至溶剂蒸干,最后在氮气或氩气气氛下进行高温固相反应,得到Li6CoO4预锂化剂。电容器的制备方法包括将正极活性材料、Li6CoO4预锂化剂、导电剂与粘结剂混合制备正极极片,再将负极活性材料、导电剂与粘结剂混合制备负极极片,最后容量匹配后组装成电容器。本发明制备得到的Li6CoO4预锂化剂在充放电过程中不仅对负极起到预锂化作用,还会对正极贡献容量,添加预锂化剂Li6CoO4的超级电容器拥有更高的能量密度与功率密度。
本申请提供了一种回收废旧锂离子电池水循环利用系统,包括:浸出提锂单元和与浸出提锂单元连通的烟气净化单元;所述浸出提锂单元,用于提纯分离锂离子,其包括碳酸氢锂浸出工艺段、氢氧化锂浸出工艺段、中和沉锂工艺段和压滤净化工艺段,碳酸氢锂浸出工艺段和氢氧化锂浸出工艺段分别与中和沉锂工艺段连通,中和沉锂工艺段中发生中和沉锂反应获得碳酸锂晶体析出液,再经压滤净化工艺段进行压滤以分离出低浓度含锂母液,将低浓度含锂母液分别输送至碳酸氢锂浸出工艺段和氢氧化锂浸出工艺段以及烟气净化单元;烟气净化单元,用于净化烟气、回用烟气中的水蒸气以及通过含锂母液浸提烟气中的含氟化合物。此系统可以实现节水和废水“零排放”。
本发明公开了一种复合型锂离子电解液及包含该电解液的电池,该电解液包括以下原料:复合锂盐、添加剂和溶剂;上述复合锂盐包括二草酸硼酸锂和四氟硼酸锂;上述添加剂包括N‑甲基,丙基哌啶双三氟甲磺酰亚胺盐和双三氟甲磺酰亚胺锂;上述溶剂包括含硅溶剂。上述复合型锂离子电解液的粘度较低,而以该电解液制备的电池,在常温和高温下,都有较好的稳定性。
本发明涉及一种高效生产高纯度碳酸锂的方法,属于轻金属冶炼技术领域,包括以下步骤:步骤S1、含锂原料的预处理,得到预混料,步骤S2、预混料的挥发气体处理,步骤S3、将挥发的气体回收溶解处理,得到含锂溶液,步骤S4、使用离子交换树脂对含锂溶液进行离子交换处理,使用氢氧化钠溶液解吸后得到解吸液,步骤S5、将解吸液碳酸化沉淀处理,得到高纯度的碳酸锂产品;本发明相对于现有技术的石灰石焙烧法、硫酸法和硫酸盐法,制备流程短,具有生产效率高、适用范围广、产品纯度高、节能减排等特点,能够大规模工业化生产高纯度的碳酸锂产品,实现锂资源的有效提取和高效利用。
本申请涉及一种锂电池与保护板的安装设备,涉及锂电池的技术领域,其包括安装箱,安装箱内水平放置有锂电池组,锂电池组顶面上粘接有若干个排线,锂电池组长度方向一端固定设置有保护板,排线靠近保护板的一端固定连接有排线板,排线板用于与保护板连接,锂电池组顶面的两侧均沿自身的长度方向固定设置有若干个焊接片,焊接片与排线一一对应;安装箱内设置有焊接机构和压线机构,压线机构用于将排线一端弯折至焊接片顶面上,焊接机构用于在压线机构工作前对焊接片进行锡焊,焊接机构用于在压线机构工作后对焊接片上的排线进行锡焊。本申请具有提高焊接效率,同时提高排线与锂电池组连接稳定性的效果。
一种快充锂离子电池负极用改性集流体及其制备方法,其中改性集流体包括集流体本体,及由内往外依次设置在集流体本体正面的第一碳纳米管掺杂石墨涂层、第一钛酸锂涂层;以及设置在其反面的第二碳纳米管掺杂石墨涂层、第二钛酸锂涂层。本发明还提供上述改性集流体的制备方法。本发明提供的快充锂离子电池负极用改性集流体结构简单,实用性强,可根据电芯尺寸要求更改涂宽,设计灵活,应用广泛;采用的碳纳米管掺杂石墨材料涂层可以有效提高电池内部的电子电导和离子电导;钛酸锂涂层在锂离子电池充放电过程中可释放一定的锂离子来缓解由于负极材料结构的不可逆变化造成的容量损失;该集流体能有效改善三元体系材料的倍率、循环及安全性能。
一种从预分离钙镁后的盐湖水中提锂的工艺。采用低碳链有机化合物,如乙醇、丙醇或丙酮作为提锂的溶剂,与由盐湖水脱钙镁后得到的固体混合盐或者它们的饱和溶液充分混合,使LiCl进入有机溶剂而其它盐则留在固相中,达到分离、提取、纯化锂的目的。得到的含锂有机溶液用碳酸铵沉淀碳酸锂,再用氢型与氢氧型树脂组成的连续离子交换系统脱盐,或者使含氯化锂的有机溶液直接通过氢型与氢氧型树脂组成的连续离子交换系统脱除氯化锂。经脱盐处理后得到的有机溶剂只含水不含盐,本工艺选择采用渗透汽化法分离回收水及有机溶剂返回流程使用。
高纯纳米氟化锂的制备方法,以工业氯化锂和氟化氢铵为原料,氯化锂经水溶解、萃淋树脂色层法纯化、浓缩、喷雾干燥得到高纯无水氯化锂;氯化锂经氟化氢铵干法合成氟化锂。本发明相对于提纯碳酸锂、氢氧化锂等锂化合物而言,工艺简单、操作方便;采用干法合成氟化锂,引入杂质少,含水量低;合成与分离纯化在同一设备中分步完成,缩短了工艺流程,操作方便。采用本发明获得的高纯氟化锂产品为具有纳米介孔结构的类球形纳米晶聚结体,活性高。
本发明公开了一种废旧锰酸锂材料回收处理的方法,其将废旧锰酸锂材料进行还原处理,分解得猛产品和锂化合物。本发明以废旧锰酸锂材料为原料,利用锰酸锂中锰的高价态而存在的氧化性,通过还原处理将锰酸锂中的高价锰元素还原成低价态,从而打破锰酸锂的分子结构,使锰酸锂分解成为锂产品和锰化合物。再利用锂化合物的性质,使其与水反应生产氢氧化锂溶于溶液中,进而简单有效地实现锂和锰分离。本发明工艺流程短、生产成本低、能耗低、经济效益明显,有利于促进废旧锰酸锂电池的回收发展。
本发明公开了一种低温环境下锂离子电池的内部快速加热方法。包括以下步骤:实时采集锂离子电池的温度、端电压、充放电电流,将上述采集值作为控制系统的输入;控制系统根据电池温度、电流等参数,采用扩展卡尔曼滤波估计锂离子电池的实时SoC;访问根据实验数据辨识出的锂离子电池电热耦合模型的参数数据库,获得实时的电池参数;采用遗传算法求解加热时间和能耗的优化问题,输出脉冲充放电电流幅值。本发明能显著缩短锂离子电池的加热时间,降低加热过程中锂离子电池的能量损耗,有效恢复低温环境下锂离子电池的性能,提高电动汽车在低温环境下的续航里程。
本发明适用于锂离子电池技术领域,提供了一种电解液流动型锂离子电池系统,本发明利用温度调节组件将锂离子电池的电解液调节至最佳工作温度,再利用循环泵将该电解液持续且同时输入每一个单体电芯内,替换单体电芯内的电解液,通过电解液的不断流动可以实现锂离子的有效补充,延长锂离子电池系统的使用寿命,同时,不断流动的电解液还能够快速调节单体电芯的温度,使其更快地达到最佳工作温度,另外,通过电解液不断流动的方式调节单体电芯温度的方式能够省去其他热管理部件,简化锂离子电池模块和锂离子电池系统的结构。
本发明属于无机化工技术领域,公开了一种一水硬铝石型铝土矿溶出液中锂铝分离的方法,铝土矿溶出液成分为Na2Ok:160~171g/L、Al2O3浓度:180~194g/L、αk:1.4~1.5、Li2O浓度:60~70mg/L的铝酸钠溶液,方法包括:S1.离子筛合成:使用锂源和钛源合成钛酸锂,钛酸锂经酸洗改性后得钛系锂离子筛;S2.铝锂分离:将S1所得到钛系锂离子筛加入铝土矿溶出液中,控制温度80~110℃,反应1~4h后过滤得富锂渣和脱锂滤液,脱锂滤液进入制备氧化铝产品的后续工序;S3.解析:使用稀盐酸对S2所得富锂渣进行解析,得富锂解析液和解析后的钛系锂离子筛,解析后的钛系锂离子筛返回S2循环使用,富锂解析液用于回收锂盐产品。本发明为工业生产上铝酸钠溶液中锂离子的净化去除和锂的资源化回收提供了新的思路。
本发明公开了一种氧化铝包覆的钛酸锂的制备方法,包括以下步骤:1)将铝盐、钛酸锂、第一醇类溶剂和分散剂混合反应,真空干燥,得到铝盐包覆的钛酸锂前驱体;钛酸锂与第一醇类溶剂的质量比为1:0.5~1:4。2)将铝盐包覆的钛酸锂前驱体烧结冷却,得到氧化铝包覆的钛酸锂。铝盐在第一醇类溶剂和分散剂作用下和钛酸锂充分混合均匀,钛酸锂表面形成的氧化铝膜厚度适中,均匀、粒径小,使得制备的氧化铝包覆的钛酸锂降低了钛酸锂的吸水性,降低了Ti-O键对电解液的分解作用,使得其在过电位的情况下也不会与电解液反应,从而改善钛酸锂电池的胀气问题。
本发明公开了一种掺杂改性锂离子筛,所述掺杂改性锂离子筛的分子式为:HMxMn2‑xO4,其中,M为Co或Ni,0.020≤x≤0.095,所述掺杂改性锂离子筛的晶型为单一纯相的尖晶石晶型,所述锂离子筛为球形,且其平均颗粒直径为2μm‑5μm。本发明还相应提供上述掺杂改性锂离子筛的制备方法及应用。本发明的掺杂改性锂离子筛通过镍或钴掺杂改性,其晶胞结构更加稳定,解决了传统HMn2O4锂离子筛易溶损的难题,可多次重复循环使用。另外,本发明的掺杂改性锂离子筛形貌优异,颗粒平均粒径小,比表面积较大,其特定形貌有利于含锂液的充分接触,便于锂离子的嵌入与脱出,并且有利于保持材料的循环稳定性能。
中冶有色为您提供最新的湖南有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!