本发明公开了一种橡胶‑玻璃钢复合材料制品的成型方法,采用先热硫化一体成型一层薄玻璃钢外壳,在玻璃钢外壳表面再成型剩余玻璃钢部分的分段成型工艺,避免了橡胶‑玻璃钢复合材料制品制备过程中热粘工艺而导致的无法排余胶和排气的问题,适用于制备密封型复合材料制品和大尺寸夹心型复合材料制品,具有成型工艺简单,保留了热粘接优异特性的优点,易于工程化应用。还公开了该成型方法制备得到的橡胶‑玻璃钢复合材料制品,橡胶与玻璃钢材料之间粘接形式为热粘,界面层粘接强度高且制品内部无气泡缺陷,比采用冷粘工艺制备的橡胶‑玻璃钢复合材料制品界面性能优异。
本发明涉及碳纤维增强碳化硅陶瓷基复合材料技术领域,且公开了一种高温抗氧化的CfSiC复合材料,包括以下重量份数配比的原料:45~65份微米SiC陶瓷粉、15~35份微米Cf粉、5~10份抗氧化剂、8~15份陶瓷粘结剂;其中,抗氧化剂由微米ZrB2粉与纳米的Al2O3粉等质量混合组成。本发明还公开了一种高温抗氧化的CfSiC复合材料的制备方法。本发明解决了Cf/SiC复合材料中的增韧相碳纤维,在高温氧化性的使用环境下,容易发生氧化反应的技术问题。
一种高填充木塑复合材料造粒排气除溢装置,属于木塑复合材料加工装置技术领域,包括储料室,所述储料室包括储料室一与储料室二,两个储料室相连,所述储料室设置在机筒上,其上方设有自然排气口,机筒上设有排气孔。本发明采用滑动式双工位储料室结构对高填充木塑复合材料造粒过程中从排气孔溢出的熔体物料进行快速清理,操作方便,效率高,有效保证了高填充木塑复合材料的稳定挤出。
一种复合材料轨枕的制备方法,包括以下步骤:通过引导使玻璃纤维无捻粗纱表面和内部输送到一浸胶槽内浸渍树脂体系;通过将表面毡等送至一对辊挤压装置,并与浸渍后的玻璃纤维无捻粗纱汇合;再通过预成型模具系统进入到成型模具系统,成型模具系统上划分有多段温控区域,成型后的粗坯通过牵引装置送到模具系统外,得到带有格构形腔体的中空型轨枕本体,脱模后通过一冷却平台,利用切割装置将粗坯切割至要求的尺寸,即得到中空型复合材料轨枕本体;最后通过胶粘结和/或紧固件在轨枕本体的两端安装固接上端盖,得到复合材料轨枕。本发明的工艺步骤简单、工艺效率高、成本低,可实现连续化和自动化生产特定中空型结构的复合材料轨枕。
本发明公开了一种无机改性三聚氰胺氰尿酸盐阻燃尼龙6复合材料的制备方法,以熔融己内酰胺为反应介质,将三聚氰胺和氰尿酸在一定温度和pH值下反应,在反应过程中加入水、无机改性组分和/或生成无机改性组分的前驱物、以及其他助剂,制得无机改性三聚氰胺氰尿酸盐复合阻燃剂,再在一定温度和压力下原位聚合制备无机改性三聚氰胺氰尿酸盐阻燃尼龙6复合材料。整个制备过程中熔融己内酰胺既作为无机改性三聚氰胺氰尿酸盐制备的溶剂,又作为尼龙6的聚合单体;三聚氰胺氰尿酸盐的合成、改性和尼龙6的聚合一步完成。该方法所制备的阻燃尼龙6复合材料具有阻燃剂添加量少、复合材料综合性能优异等特点。
本发明公开了一种金属基功能梯度复合材料的成型方法,首先将添加剂与粉末原料混合后,得到混合料;然后将上述步骤得到的混合料放入复合模具组中,进行复合压力成型后,得到坯料;所述复合模具组包括外层高膨胀系数模具,中间过渡层模具组和内层低膨胀系数模具;最后将上述坯料经过烧结后,得到金属基功能梯度复合材料。本发明制备了具有大尺寸、复杂外形结构的多组分无明显界面的金属基梯度功能复合材料。经过烧结成型后的梯度功能复合材料沿厚度方向获得具有不同组分、不同晶粒尺寸的无明显界面的梯度晶粒组织,使成型的金属基复合材料获得了结合高硬度、耐磨性、强度和韧性的较好的综合机械性能。
基于表层炭化处理的竹芯复合材料制作方法及其制品,采用竹材作为复合材料的夹芯材料,先对竹材进行表层炭化处理,使得竹材形成炭化,再将表层炭化处理的竹材按照顺序排列在复合材料中间,形成芯层;在表层炭化处理的竹材的上下两面分别与高分子树脂相结合,形成上下两层高分子树脂表层,构成三明治结构的竹芯复合材料。本发明利用竹材作为芯层,并通过表层炭化处理再与高分子树脂相结合,可以去除竹材表面的半纤维素和其它小分子物质,减轻了竹材重量,改善竹材表层的极性,形成多孔性结构,使竹材能够更好的与高分子树脂相结合,提高了复合材料之间的层间结合力,有效降低了材料密度。同时仅对表层进行炭化处理,可以节约能源,降低制造成本。
本发明公开了一种耐磨绝热复合材料及其制备方法,将耐磨层原料放入模具中加压并保压,在卸压、脱模后进行烧结制成耐磨层板材,然后将耐磨层板材经过萘‑钠处理液活化处理;将纤维或纤维‑织物浸渍胶黏剂,形成在纤维或纤维‑织物上有半固化物的增强层预浸料;将一层及以上重叠的增强层预浸料和耐磨层板材复合进行热压成型,制得耐磨绝热复合材料。本发明将耐磨材料和增强材料复合一体成型,在保证耐磨层和增强层的结合强度的情况下,免去粘接工序,保证了复合材料表面低温下具有耐磨性能和良好的机械强度高、绝缘、绝热性能。本发明复合材料应用于室温到绝对零度的低温环境下能同时满足绝缘、耐磨、绝热和结构支撑作用。
本发明公开的是一种含咔唑结构的聚酰亚胺纳米复合材料及其制备方法和应用。此复合材料采用具有高平面性含咔唑结构的芳香二胺、各种四酸二酐和层状纳米粒子为原料。在氩气气氛中,将层状纳米粒子分散在强极性非质子有机溶剂中,再将二胺与二酐加入分散液中,搅拌反应得到聚酰胺酸复合胶液,或者,分散层状纳米粒子的同时将二胺与二酐在另一容器中制备聚酰胺酸胶液,再将纳米粒子分散液和聚酰胺酸胶液混合得到复合胶液,最后对聚酰胺酸进行脱水得到聚酰亚胺纳米复合材料。此类聚酰亚胺的分子链具有较好的平面性和刚性,再与层状纳米粒子复合所制备的复合材料具有优异的热稳定性和阻隔性能,可广泛应用于高阻隔包装与器件封装等领域。
一种磷酸亚铁锂正极复合材料的制备方法,它是将三价铁源化合物、锂源化合物、磷酸盐、掺杂的金属元素化合物和碳黑按一定比例备料,先将三价铁源化合物加入超细球磨机中球磨成粒径100~500NM,再加入其他原料以丙酮为分散剂进行球磨混合,真空干燥后,于惰性保护气氛炉中低温烧结以还原三价铁,之后向所得磷酸亚铁锂中加入一定量的导电剂材料,于球磨混合干燥后,在惰性保护气氛炉中高温烧结,最后进行破碎、粉碎、分级后即得所需磷酸亚铁锂正极复合材料。其优点:材料振实密度得到保证,可达到较佳的容量和倍率性能,二次烧结处理使碳包覆更均一,颗粒倍率性也更好。
本实用新型公开直压式生物质复合材料的连续生产系统,直压式生物质复合材料的连续生产系统,包括熔膜成型装置一和纤维材料输送装置;熔膜成型装置一包括熔膜成型机一和设置在熔膜成型机一下方的成型辊一;纤维材料输送装置包括由上到下依次设置的输送机、成型辊二和成型辊三;成型辊一与成型辊二的表面形成输送通道,其被设置为初步压合纤维材料与熔膜一,成型辊二与成型辊三相配合转动,其被设置为二次压合纤维材料与熔膜一成为一体。有效解决了纤维与塑料共混后的复合材料生产过程中的长纤维材料易吸水,易缠绕,很难实现均匀、稳定输送,从而导致制品表观质量差,力学性能不均衡等缺陷,使直压式生物质复合材料的生产效率提高,易于加工。
一种中低速轨道交通用碳纤维复合材料车体结构,包括外蒙皮(1)、内蒙皮(2)以及外蒙皮与内蒙皮之间的阻燃泡沫芯材(3),所述外蒙皮与内蒙皮均采用碳纤维复合材料,且外蒙皮与内蒙皮所采用的碳纤维复合材料中的基体均为阻燃环氧树脂,外蒙皮与内蒙皮的厚度均等于3~8mm。本实用新型的车体采用碳纤维复合材料制作内外蒙皮,阻燃PET泡沫作为芯材,可使车体轻量化,降低车辆能量损耗,内外蒙皮与中间芯层可通过模具一体化成型制作,零件数量少,重要尺寸可由模具保证,利于控制装配尺寸链,本实用新型的复合材料车体整体性好,结构抗高速冲击性能强,抗震性能、隔音隔热性能好。
本发明属于复合材料技术领域,尤其涉及一种改性树脂复合材料及其制备方法和电缆支架。本发明提供的改性树脂复合材料以重量份数计,其原料包括以下组分:聚醚酰亚胺改性双酚A环氧树脂22~28份;低收缩剂9~12份;重质碳酸钙4~7份;固化剂3~5份;硬脂酸锌0.75~1.2份;氧化镁糊0.2~0.3份;玻璃纤维短切纱20~25份。本发明通过对树脂复合材料的原料配方进行优化设计,特别是利用聚醚酰亚胺对双酚A环氧树脂进行增韧改性,大幅提高了改性树脂复合材料在低温环境下的力学性能,将其作为电缆支架材料使用时,可有效解决传统电缆支架在低温环境下潜在的安全隐患,大大提高电缆支架的使用寿命。
本实用新型公开了一种机车复合材料内装出风格栅安装结构,涉及机车制造领域,解决了现有技术留有工艺缝会影响表面美观性的问题。包括复合材料内装,复合材料内装按照预定出风位置开设有若干腰型孔,复合材料内装的内表面以腰型孔为基准粘接有格栅,使得格栅安装由外安装转变为内安装,格栅粘接在内表面避免了两者结合处在可视面产生工艺缝,提高了产品美观性,而且可以通过复合材料糊制层增加粘接可靠性。
本发明提供了一种高纯碳纤维增强碳化硅复合材料及其制备方法,属于高温高纯复合材料及其先进制造技术,可应用于半导体、太阳能、光电、机械、冶金、化工、材料等领域。制备方法包括:首先对碳纤维毡与碳纤维布进行纯化处理,再在其表面交替进行热解炭与SiC界面相沉积,然后将制备的高纯陶瓷料浆用喷涂法喷涂在含复合涂层的碳纤维毡或碳纤维布表面,再进行叠放、针刺、烘干和固化,得到复合材料素坯,再对素坯进行高温炭化处理、纯化处理和增密处理,得到高纯碳纤维增强碳化硅复合材料。上述方法缩短了制备周期,降低了生产成本;用上述方法制得的复合材料的杂质含量低于10ppm,密度大于2.20g/cm3,弯曲强度大于150MPa。
本发明提供了一种碳纤维增强碳化硅陶瓷基复合材料及其制备方法,属于新材料领域,具体为太阳能、半导体、冶金、能源、化工、材料、机械、交通、航天航空等的领域的高温/高纯、高温热场/承重、摩擦磨损、耐腐蚀材料、抗氧化材料。所述制备方法包括将碳化硅浆料均匀喷涂或涂布在碳纤维毡和碳纤维布表面,然后经交替层叠、针刺、烘干和温压固化后得到复合材料素坯;再对复合材料素坯进行炭化、热解炭和碳化硅界面相的交替渗透沉积,最后进行热解碳渗透沉积和增密处理,得到碳纤维增强碳化硅陶瓷基复合材料。本发明提供的制备方法的制备周期短、制备成本降低,制得的碳纤维增强碳化硅陶瓷基复合材料均匀性好、强度高,性能可靠。
本发明公开了一种高熔体强度聚乳酸复合材料及其制备方法,以聚乳酸、聚己二酸/对苯二甲酸丁二酯、支化剂、滑石粉、甲基丙烯酸缩水甘油酯接枝乙基甲基丙烯酸酯共聚物和扩链剂为原材料,经混合制粒后制得。本发明在聚乳酸复合材料中加入扩链剂和支化剂,以及无机填充有效提升复合材料中聚乳酸的分子量,增加分子链长度,增加分子链间的缠结与相互作用,最终达到提升聚乳酸复合材料熔体强度的目的。
一种轻量化复合材料推力杆,包括位于最外周的外周层增强件和注塑在外周层增强件内部与外周层增强件结合为一体的长纤维增强热塑性复合材料或短纤维增强热塑性复合材料,外周层增强件包围的两端处设有金属钢套,金属钢套内设有橡胶金属球铰,长纤维增强热塑性复合材料或短纤维增强热塑性复合材料注塑在外周层增强件与金属钢套之间;其中外周层增强件为利用带状的连续纤维增强热塑性复合材料缠绕后压制成的在周向上封闭的连续式整体结构。本实用新型采用完整的外周层增强件结构与内部金属钢套注塑融合形成的推力杆性能优越,强度高,能够承受更大的拉伸强度而不容易被撕裂。
本实用新型公开了一种复合材料件与金属结构件的可拆卸连接结构,将复合材料件与夹设于复合材料件两端面的金属结构件可拆卸连接起来,包括紧固销和衬套;所述复合材料件和金属结构件上设有同轴的通孔,所述衬套套接于复合材料件上的通孔内,其内孔为锥形孔,所述紧固销穿设于金属结构件的通孔和衬套的内孔中,其与锥形孔位置对应的轴段为与锥形孔配合的锥形段。本实用新型的复合材料件与金属结构件的可拆卸连接结构具有简单实用、连接可靠、可多次重复拆装和零部件配合容错率高等优点。
本发明具体涉及一种磷酸钒锂/膨胀微晶石墨复合材料在锂离子电容器中的应用,将制备的磷酸钒锂/膨胀微晶石墨复合材料制成电极片作为正极,采用活性炭和石墨混合制成电极片作为负极,正负极片之间夹以聚丙烯隔膜,组装成锂离子电容器,正负极片之间注入浓度为1mol/L的硝酸锂水溶液为电解液。本发明制备的锂离子电容器使用了磷酸钒锂/膨胀微晶石墨复合材料制成电极片作为正极,磷酸钒锂/膨胀微晶石墨复合材料采用廉价易得的膨胀微晶石墨替代石墨烯为原料,得到的复合材料具有优异的电化学性能,在保持充放电比容量不降的情况下,具有更好的循环稳定性,经济效益高,适合工业化应用。
本发明具体涉及使用磷酸铁锂/膨胀微晶石墨/碳复合材料的锂离子电容器的制备方法,将制备的磷酸铁锂/膨胀微晶石墨/碳复合材料制成电极片作为正极,采用活性炭和石墨混合制成电极片作为负极,正负极片之间夹以聚丙烯隔膜,组装成锂离子电容器,正负极片之间注入浓度为1mol/L的硝酸锂水溶液为电解液。本发明制备的锂离子电容器使用了磷酸铁锂/膨胀微晶石墨/碳复合材料制成电极片作为正极,磷酸铁锂/膨胀微晶石墨/碳复合材料采用廉价易得的膨胀微晶石墨替代石墨烯为原料,得到的复合材料具有优异的电化学性能,在保持充放电比容量不降的情况下,具有更好的循环稳定性,经济效益高,适合工业化应用。
本发明提供了一种高强度、高导热性的铝合金/陶瓷复合材料的制备方法,属于复合材料领域。铝合金/陶瓷复合材料的制备方法以铝合金、钨酸锆、氮化硅(Si3N4)和氮为原料;将熔融状态的铝合金流出后同时含钨酸锆的液氮高速喷出,在液氮的冲击和拉动下是液态铝合金被迅速雾化、冷却逐渐堆砌呈柱状,期间液态铝合金在氮气的冲刷下部分和氮气反应形成陶瓷AlN,同时钨酸锆的添加抵消了铝合金热胀冷缩效应,解决了现有技术中铝合金材料易发生形变的问题,可用于精密仪器、军工、航空航天等对材料尺寸稳定性要求高的领域。同时本发明利用所述加工装置制备复合材料操作方便,大大提高了生产效率。
本发明公开了一种金刚石‑硬质合金复合材料及其制备方法与应用,该金刚石‑硬质合金复合材料包括1~14wt%金刚石,余量为硬质合金粉,金刚石粒径为100~750μm的单晶金刚石,硬质合金粉包括粘结相、硼、粘结相合金化元素、碳化钨,粘结相为镍、钴中的一种或两种,粘结相合金化元素为钨、钼、铬中的一种或两种。该复合材料是经球磨干燥后常规模具冷压成型,再分段分压进行高温烧结制得,显著提高了金刚石的粘结强度,硬质合金对于大颗粒金刚石的把持力显著提升,从而提高了金刚石复合材料的耐磨性能。该制备方法无需使用价格高昂的石墨模具压制成型,能够解决批量生产大颗粒金刚石硬质合金材料时石墨模具对于产能的限制,降低了生产成本,便于推广应用。
本发明提出了一种气动传输装置用复合材料耐冲刷流道的制备方法,将玻璃纤维预浸料预制后热压成型,再内衬聚氨酯弹性体涂层而制得。本发明设计的结构为:内层采用聚氨酯耐磨弹性体涂层+外层玻璃纤维复合材料。外层玻璃纤维复合材料管壁具有很高的比强度和比刚度,内层聚氨酯涂层具有较好的弹性,且耐磨,采用了聚氨酯弹性体涂层替代内衬陶瓷片,具有更轻的质量,更好的柔韧性,可以进一步提高产品的耐冲刷性能及使用寿命,外层玻璃纤维复合材料采用预浸料预制后热压成型,具有更高的强度及更好的层间密实度。本发明具有重量轻、强度高、耐磨效果好及涂层附着力好等优点。
本发明涉及耐刮擦技术领域,提供了一种生物基聚硅氧烷耐刮擦助剂及其制备方法和耐刮擦复合材料。本发明利用绿色、可再生的生物基材料衍生物对低含氢聚硅氧烷进行改性接枝,设计合成出生物基聚硅氧烷类耐刮擦助剂。生物基聚硅氧烷耐刮擦助剂在用于耐刮擦复合材料时,其主链在聚合物基材成型过程中会迁移到复合材料表面形成一层润滑膜,提高复合材料的耐刮擦性能;刚性苯环结构的侧链能赋予聚合物基材一定的硬度和更高的热性能,进一步提高复合材料的耐刮擦性能和抗析出发黏性。实验结果表明,本发明提供的生物基聚硅氧烷耐刮擦助剂能明显改善聚合物基材的耐刮擦性能;同时,台阶曲线测试进一步证明聚合物基材的耐刮擦性能得到明显改善。
本发明公开麦秸秆/PBS复合材料的制备方法,按照重量百分比称取麦秸秆纤维为60%~80%,PBS为20%~40%,通过合理调整麦秸秆纤维和PBS的用量,通过螺旋挤出机、真空输送器、传送装置、滚筒的相互配合,共同协作,使麦秸秆和PBS紧密结合,制备出力学性能优异,耐热性能好,热变形温度较高,环保的复合材料。本麦秸秆/PBS复合材料的制备方法能有效控制麦秸秆/PBS复合材料的结合力,增加麦秸秆和PBS界面的相容性,解决了麦秸秆纤维与PBS共混后的复合材料具有流动性差、易过热、加工过程有大量气体释放、分散不均匀等现象,生产方法简便易操作,制得的麦秸秆/PBS复合材料性能稳定。
本发明属于炭炭复合材料加工技术领域,尤其是一种炭炭复合材料坯体快速固化装置,现提出如下方案,其包括保护座,所述保护座内固定安装有供电电池,所述保护座的底部固定连接有电池控制开关,所述供电电池的正负极均电性连接有连接导线,所述保护座的上方设置有下加热座,所述下加热座的顶部贴合有上加热座,所述下加热座和上加热座之间形成一个密封的加热腔,所述加热腔内放置有炭炭复合材料胚体;本发明的设计了一个直接对炭炭复合材料胚体通电加热的固化装置,从而可以使得炭炭复合材料胚体受热均匀,从而使得固化一致,有效解决炭炭复合材料胚体在固化过程中出现变形、分层问题,产品质量稳定性的问题。
一种耐磨高抗冲尼龙复合材料,以重量份计,包括以下组份:尼龙树脂20?80份;纤维材料10?50份;耐磨剂10?40份;表面处理剂全氟聚醚0.1?2份;润滑剂0.1?1.0份和抗氧剂0.1?0.6份。本发明的制备方法:将不同型号的耐磨剂中速混合均匀;升温至90?100℃,再加入全氟聚醚高速混合均匀;添加尼龙树脂、润滑剂、抗氧剂,继续混合均匀;将所得混合物与纤维材料通过双螺杆挤出机熔融共混挤出、牵引、冷却、切粒,即制备出耐磨高抗冲尼龙复合材料。本发明的耐磨高抗冲尼龙复合材料,摩擦系数低、耐磨性能好、力学强度高、耐热性好、韧性及抗冲击性能优异、成型收缩率低、尺寸稳定性好、材料流动性好、易于加工成型。
大尺寸缠绕复合材料环的成型装置,包括带整轴和两端封头的缠绕成型组件,其特征在于所述的缠绕成型组件两端封头的外侧均安装可拆卸的环形挡纱组件,所述的环形挡纱组件与缠绕成型组件同轴设置,且沿轴向从缠绕成型组件封头落纱位置向外伸出,以防止纱线在缠绕成型组件封头的落纱位置滑脱。发明可有效避免缠绕过程中纱线在封头落纱位置滑脱,缠绕稳定性好,效率高,提高纱线为40~50o的大尺寸缠绕复合材料环的制备稳定性和制备效率。本发明还提供一种大尺寸缠绕复合材料环的成型方法。
中冶有色为您提供最新的湖南株洲有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!