本发明属铝基复合材料技术领域,具体涉及一种原位Al2O3颗粒增强铝基复合材料的制备方法。其包括以下步骤:第一步,将铝粉和纳米氧化锌混合球磨;第二步,将球磨后的混合粉末在半固态搅拌下加入到铝镁合金熔体中,保温后浇铸;第三步,每次取部分二步制备的样品熔化,施加循环冲击作用;保温后浇铸得到原位Al2O3颗粒增强铝基复合材料,剩余材料重此步骤,直至全部材料冲击完成。第四步,将分散完成的复合材料重熔,并调整基体合金成分静置扒渣后浇铸至预热的铜模中。该方法可有效的解决复合材料制备过程中增强体颗粒团聚的问题,制备的复合材料颗粒分散均匀,增强颗粒与基体界面干净,性能优异。
本发明属于纳米复合材料技术领域,涉及一种钛酸锌/还原氧化石墨烯纳米复合材料的制备方法,首先以溶剂热法制得钛酸锌微米花,然后配制钛酸锌微米花悬浮液A、石墨烯溶液B;将悬浮液A与溶液B混合均匀后得悬浮液C;冷冻干燥,得到钛酸锌/氧化石墨烯纳米复合材料,在5% H2/Ar混合气氛中200~400℃煅烧0.5~2 h,即得。本发明将预锂化的钛酸锌/还原氧化石墨烯作为锂离子混合超级电容器的负极活性物质,合成方法简单,反应前后无污染并且成本较低。石墨烯良好的导电性能可以提高电子的传输效率。应用于锂离子电容器,输出电压可达到4.5 V,较大幅度地提高锂离子电容器的能量密度,兼具锂离子电池的高能量密度特性和双电层电容器的高功率密度特性。
本发明涉及无机材料领域,公开了一种炭材料3D增韧碳化硅复合材料及其制备方法和应用,该炭材料3D增韧碳化硅复合材料,包含微米尺寸的炭材料0.01~10wt%、纳米尺寸的炭材料0.01~10wt%和碳化硅80~99 wt%;通过将微米尺寸的炭材料和纳米尺寸的炭材料介入碳化硅中构成微米‑纳米尺寸的炭材料3D增韧结构制得。与现有技术相比,本发明只需要使用很少量的炭材料既可以使得碳化硅的增韧效果得到明显改善,炭材料与碳化硅界面结合性好,形成的碳化硅复合材料性能稳定,由其制成的碳化硅复合陶瓷弯曲强度高。
本发明提供了一种提高NiWCr铁基复合材料摩擦磨损性能的方法,步骤如下:步骤1、将NiWCr合金粉、Cu粉、MoS2、石墨粉和Fe粉按比例进行称量,然后以250r/min转速进行12h的球磨混料,以60Mpa压制成型,再经过1100℃×1h的烧结;步骤2、将烧结后的复合材料加热到950℃,保温1小时,油淬到室温,再进行深冷处理,然后升温到室温,再进行低温回火,保温2小时。本发明一种提高NiWCr铁基复合材料摩擦磨损性能的深冷处理方法,相比传统的添加陶瓷颗粒,稀土元素的方法,具有成本低,污染小,可操作性强,非常适合大范围工业实际应用。
本发明公开了一种纳米线/聚合物/纳米颗粒夹心复合材料的制备方法,涉及纳米复合材料技术领域。本发明先合成出不同功能的纳米线;再将其超声分散在特定溶剂中,并以纳米线作为模板,加入聚合物单体,超声聚合反应一定时间,经简单后处理后即可得到原位生成的纳米线/聚合物功能材料;然后再将纳米线/聚合物功能材料作为模板,利用聚合物表面的活性基团,在该模板上原位生成功能性金属或金属氧化物纳米颗粒,得到纳米线/聚合物/纳米颗粒夹心复合材料。本工艺过程简单,成本低,产率高,具有一定的普适性,制得的纳米线/聚合物/纳米颗粒夹心复合材料结构可控、功能可调,在多功能复合材料领域有着广泛的应用前景。
本实用新型公开了一种工型复合材料长桁制件仿形加工装置,该仿形加工装置包括模体、靠模板和切割组件;所述模体与工型复合材料长桁制件的立筋贴合,用于工型复合材料长桁制件侧立安装;所述靠模板位于模体两侧,与模体配合将工型复合材料长桁制件的腹板夹在中间;所述靠模板上设有仿形槽,所述仿形槽的形状与工型复合材料长桁制件腹板的设计外型轮廓匹配,所述切割组件可沿仿形槽移动并切割工型复合材料长桁制件的腹板。使用该装置仿形切割,通过仿形槽对切割路径进行限定不会产生过切风险,保证切割精度,降低操作难度,批量加工重复性好,产品质量稳定,节省了人力,更适用于批量生产。
本发明提供了一种复合材料保温板及其制备方法。该复合材料保温板,包括以下重量份的各组分:硅酸盐水泥80~100份;聚苯颗粒5~10份;PP纤维2~5份;粉煤灰10~15份;憎水粉0.3~0.5份及水100~110份。该复合材料保温板的制备方法,包括以下步骤:1)将硅酸盐水泥、粉煤灰及水放入高速搅拌机中搅拌;2)加入PP纤维及憎水剂至高速搅拌机中;3)加入聚苯颗粒至高速搅拌机中,得到保温砂浆;4)将保温砂浆倒入模具中,即得复合材料保温板。上述复合材料保温板,由于设有聚苯颗粒及PP纤维,能够增强复合材料保温板的抗拉强度、抗压强度及阻燃性能;另外,由于加入有粉煤灰,可以进行废物利用,节约了生产成本。
本发明公开了一种制备石墨烯复合材料改性海洋防污涂料的方法,包括如下步骤:1)在基体表面喷涂石墨烯‑多孔钴酸镧复合材料的分散液,形成基于石墨烯‑多孔钴酸镧复合材料的薄膜;2)在基于石墨烯‑多孔钴酸镧复合材料的薄膜上喷涂低表面性能涂料层;石墨烯‑多孔钴酸镧复合材料的分散液,按重量份计包括以下组分:石墨烯‑多孔钴酸镧复合材料30‑40份、环氧树脂10‑20份、溶剂40‑50份,分散剂2‑3份、固化剂10‑20份;低表面性能的涂料层,按重量份计包括以下组分:氟四氟乙烯10‑15份、环氧树脂20‑30份,呋喃树脂3‑5份碳粉1‑2份,铁粉10‑20份,溶剂30‑35份,分散剂0.3‑0.5份、固化剂1‑5份、流平剂1‑3份;该方法制得涂料能够有效抑制海洋生物附着,可以应用于海洋防污涂料领域。
本发明涉及原位颗粒增强镁基复合材料的制备技术领域,特别涉及Mg-TiO2-B2O3合成新体系以及熔体直接反应法+机械搅拌+高能超声技术制备的一种高强抗蠕变原位亚微米/纳米TiB2颗粒增强镁基复合材料。本发明通过以下技术途径实现的,将干燥处理的反应物TiO2和B2O3粉末利用机械搅拌的方式加入镁合金熔体,加入反应物后,交替施加高能超声和机械搅拌,从而制备复合材料;该技术工艺简单,特别适合复杂部件成形,合成的增强体是高温的热力学稳定陶瓷相、生成的增强颗粒尺寸细小,尺度范围在亚微米/纳米级别,颗粒表面无污染、与基体界面结合好。?
一种层状金属复合材料制造工艺,属于金属复合材料制造工艺,使用该工艺制造层状金属复合材料时,生产工艺简单、生产效率高,生产成本低,设备简单投资小;该方法中是将液体金属直接浇注到外部装有感应加热器的结晶器内,所浇注的金属液在结晶器内受到电渣精练的同时与安装在结晶器内的金属芯棒实现复合,并达到冶金结合。复合层界面易于控制,产品无成分偏析,组织致密度高质量好,芯棒和复合层材料的选择范围宽,可以不受设备和工艺的限制,实现用小型设备制造大体积的层状及多层层状复合产品。
本发明属于高分子合成技术领域,涉及水性聚氨酯乳液改性,尤其涉及煤基腐殖酸改性水性聚氨酯复合材料的制备方法。一种煤基腐殖酸改性水性聚氨酯的制备方法,利用改进碱溶酸析法从煤中制得腐殖酸,然后将其溶解在N,N’-二甲基甲酰胺中进行改性水性聚氨酯。本发明所公开的煤基腐殖酸改性水性聚氨酯复合材料的制备方法,利用改进碱溶酸析法制得腐殖酸改性聚氨酯,制得的复合材料的乳液均一、稳定,固化膜具有良好的力学性能,可在印刷、包装、家具、广告、建材、船舶水线以上建筑物、船舱、钢结构金属支架、仪器仪表、医疗设备、电机设备、小型金属零件、仪表盘、地板、木材、纸张涂装、皮革、塑料、通讯、航天、航空等众多领域应用。
本发明公开了一种用于钎焊W-Cu复合材料与Fe基合金的钎料及方法和钎焊工艺,其钎料为箔片带状,厚度为50~100μm,钎料以重量百分比计的元素成分包括:Mn6.0%~9.0%,Co3.5%~5%,Ni0.3%~1.7%,Zr2.0%~5.0%,Ti1.2%~2.8%,余量为Cu。本发明钎料的钎焊温度在1000℃~1050℃,钎料熔化温度适中,钎料熔化均匀;使用钎料箔片有利于促进钎焊连接过程中合金元素的扩散和界面反应,提高钎料在W-Cu复合材料和Fe基粉末合金表面的润湿和铺展能力,细化晶粒和减小残余应力,提高了接头的力学性能;采用本发明的钎料连接W-Cu复合材料与Fe基粉末合金的钎焊工艺稳定可靠,利用真空钎焊连接,构件在加热过程中处于真空状态,整个构件无变形,无微观裂纹、气孔和夹杂等缺陷,其表面润湿铺展较好。
本发明公开了一种金属塑料复合材料工作层成分配比的优化方法,通过若干组正交试验得出聚苯硫醚、尼龙66和碳纤维的工作层配比参数及与之对应的复合材料的减振性与牢固性的材料性能参数;对自适应神经模糊推理系统进行训练并分别建立全局映射关系,利用三维分析软件建立系统模型并进行修正得到各参数;以减振性与牢固性各占50%的最优性能作为目标,利用遗传算法对配比参数进行复制、交叉和变异操作,得出与最优性能所对应的配比参数值,取经遗传算法优化所得的配比参数值及对应的性能参数,与用三维分析软件修正的相同的性能参数对应的配比参数相比较。本发明既保证了精度,又提高了效率,使金属塑料复合材料的减振及牢固性大幅提高。
ZrW2O8/Al2O3纳米复合材料的制备方法,按照化学摩尔计量比1∶2称量C15H36O5Zr和WOCl4置于密闭容器中取出,在氩气气氛下,将C15H36O5Zr、WOCl4溶于2-C3H8O中形成混合溶液,将密闭容器置入水浴中,加热至60~80℃搅拌4~10小时获得清澈透明溶液,停止加热,冷却至室温无沉淀析出;称量占溶液体积0.5~1%的纳米Al2O3粒子,在氩气气氛下,加入到溶液中,搅拌混合的同时水浴加热40~60℃,使得溶液呈凝胶状粒子;将复合胶体置入模腔中,在60~100℃的温度范围内施加60~100Mpa的压力热压成型;将坯材加热至900~1000℃,然后进行快速退火1~2分钟就可以得到最终的复合材料,本发明的优点在于:可从微观上尺度上对ZrW2O8/Al2O3纳米复合材料进行合成;所获得的复合胶体,易成型;降低了合成ZrW2O8的温度和时间。
本发明公开了一种用于复合材料叶片成型的装置及其使用方法,包括支撑框架和布置在支撑框架上的模体;所述模体的型腔内部布置有气囊,所述气囊充气后的形状及尺寸与所要制作的复合材料叶片的内型腔的形状和尺寸一致;所述模体位于复合材料叶片根部的一端设有与气囊相连的气嘴;制作复合材料叶片的预浸料布置在模体内并包覆在气囊上,通过气囊吹胀成型复合材料叶片,解决泡沫碎裂及真空带残留的问题。采用本发明装置成型的复合材料叶片的成型质量好,且成型效率高,制造成本低廉。成型过程操作简单、方便,且易于集成,更利于批量化生产,具有非常好的实用价值。
本申请涉及一种原位生成混合多元增强颗粒耐磨铝基复合材料及其磁场下制备方法,该铝基复合材料以7系铝合金为基体材料,向高温基体溶液中加入K2TiF6粉末添加剂,并通入适量含氨惰性气体,在低频旋转磁场中原位生成多元混合增强颗粒从而制得耐磨铝基复合材料。本发明的铝基复合材料是通过气—液合成技术和磁化学复合技术制备而成的。该复合材料相比原合金不仅在硬度和韧性方面有很大的提高,更使得7系铝合金较好的耐磨性能得到进一步增强。此耐磨复合材料可广泛应用于民用生活与工业生产中,减少材料磨损,延长设备使用寿命,提高了工作效率和经济收益,是一种应用前景广阔的耐磨材料。
一种颗粒增强金属基复合材料界面结合强度的检测方法,其特征在于:首先通过机械加工方法将颗粒增强金属基复合材料试样加工成便于扫描电镜观察的长方体,沿长方体最短的一条棱将长方体截除一块,截除后保证该棱上的两相邻面呈45o角,并对这两个相邻面进行打磨、抛光,在扫描电镜下采用带导电胶的加载头,以垂直加载方式对处于试样45o棱上的颗粒进行剥离,剥离过程中试样固定在载物台上,剥离出的颗粒粘附在导电胶以观察颗粒的形态,同时确定加载头在颗粒上加载的准确位置,由加载过程的应力模拟结果推出颗粒-基体界面结合强度。该方法适应性强,可用于多种复合材料的界面结合强度测量,操作简单方便。
本发明涉及铝基复合材料,具体地说,是一种原位亚微米/纳米陶瓷颗粒增强铝基复合材料的连续制备方法。此法中的反应物为无反应副产物的氧化物,并以反应物粉末作为陶瓷颗粒反应原料。将混合粉末轧制,并采用液态法和超声分散法相结合,有效地解决了颗粒增强铝基复合材料制备时难以将亚微米/纳米级反应物粉末加入铝熔体中、反应物粉末利用率低、反应过程有污染、原位生成的增强颗粒易于团聚及复合材料难以连续制备等问题,具有绿色环保、工艺简单、制备效率高等优点,适用于铝基复合材料的大规模工业化生产。
本发明公开了一种金属有机框架复合材料及其制备方法与应用,属于纳米复合材料技术领域。具体制备方法如下:将氧化石墨烯分散于溶剂中,然后加入活性炭,形成分散液A;将分散液A加入具有金属离子和有机配体的前驱体反应液B中,得到反应溶液;恒温震荡条件下,物质充分反应,得到金属有机框架/氧化石墨烯/活性炭复合材料。这种复合材料具有与纯的金属有机框架晶体相似的几何外形,氧化石墨烯和活性炭参与金属有机框架晶体的生成过程,复合材料兼具微孔、介孔及大孔的多级孔结构,多组元之间的协同效应使其在有害气体的吸附、分离与防护领域具有极大应用潜力。
本发明提供了一种提高颗粒增强复合材料熔体均质化的方法,属材料制备技术领域。颗粒增强复合材料熔体合成后,采用超声振动的陶瓷过滤器进行过滤,可有效促进熔体内团簇的颗粒分散,提高复合材料熔体的均质化程度,避免了颗粒团簇引起的问题,同时,该方法更有效的脱除复合材料熔体内气体、未彻底反应的盐渣及大尺寸的颗粒,可有望显著提高颗粒增强复合材料的质量。另外,采用本发明的方法简单,投资少,成本低,因兼具熔体精炼功能,可以缩短熔体合成后精炼时间,提高生产效率。
本发明公开了一种新型铜基电接触自润滑复合材料及其制备方法和应用,该复合材料包括铜的质量百分比为50%‑70%,铬的质量百分比为5%‑25%,二硒化钛的质量百分比为10%‑30%,经过混合、球磨、热压、烧结方法步骤将混合均匀的粉末材料制成适用于不同工作环境的新型电接触复合材料,具有层状结构的过渡族金属硒化物二硒化钛作为电接触复合材料中的润滑相,铬的添加能提高电接触复合材料强度、硬度和抗氧化能力。该复合材料具有优异的机械性能、摩擦学性能和电学性能。本发明工艺简单、生产过程对环境无污染,可操作性强,生产成本相对较低,成品作为电接触材料广泛应用钢铁、冶金、造船、机械、电力、航空等领域。
本发明公开了一种SiCnw/C纳米复合材料的制备方法,包括如下步骤:将白砂糖粉末和氯化铵粉末按质量比1∶1加入水中,混合搅拌后干燥,得到结晶混合物;将干燥的结晶混合物与纳米二氧化硅粉末按质量比为2~10∶1进行混合研磨,得到混合粉末;将混合粉末装入纯度为99.99%的Al2O3坩埚中,在稀有气体保护下,置于管式电阻炉内进行高温烧结,冷却后得到SiCnw/C纳米复合材料。本发明制备方法制得的复合材料利用原位自生技术,在介孔碳基体上直接生成弥散分布的碳化硅纳米线(SiCnw)增强体,生产成本低、操作简单,可潜在运用于准塑性材料,绿光催化模板和热能储存材料。
本发明提供一种机械手臂用碳纤维复合材料矩形空心管的制造方法及所得矩形空心管,以碳纤维复合材料为原材料,所述碳纤维复合材料为碳纤维预浸料,所述预浸料包括单向和织物预浸料,采用模压充气成型法制成矩形空心管;该种碳纤维复合材料矩形空心管的制造方法,是以碳纤维预浸料为原材料,采用模压充气组合成型制成矩形薄壁空心管。与现有技术相比,本发明承载能力大、刚性好、自重轻,工作时手臂的动作更加平稳,移到和停止更加迅速,碳纤维复合材料的自带振动阻尼特性使得手臂能更加快速的定位,其零热膨胀系数更加适用于精密设备,而且设备投资小、模具制造简单、生产能耗低、生产周期短而且可自动化生产。
本发明公开了一种高体积含量秸秆粉增强铝基复合材料的电阻焊接方法。该方法包括以下步骤:步骤1,清洁复合材料焊接面,干燥后备用;步骤2,将处理后的复合材料置于真空中,电极沉积泡沫铝活性层;步骤3,将带有活性层的复合材料等离子处理1‑8s后,以12‑28℃/min的速度升温,完成真空钎焊;步骤4,步骤3处理后的复合材料恒速降温至100‑230℃时,超声处理15‑20分钟即可。本发明方法焊接方便快捷,成本低廉,焊接效果牢固,所得焊接点牢固,拉伸率高,适合对密封要求高的行业使用。
本发明具有高效光催化性能的GO-CdS复合材料的水热合成制备法,属于无机纳米复合材料的技术领域。属于一种无机纳米复合材料的合成,特指以氧化石墨为基物,以硝酸镉为镉源、硫脲为硫源,以聚乙烯吡咯烷酮为分散剂,以水-乙二胺的混合溶剂为反应液,水热合成制备出GO-CdS复合材料,将制备出的复合材料作为光催化剂,应用于在可见光下催化降解亚甲基蓝溶液,能取得很好的效果。按照此法制备出的GO-CdS复合材料,在可见光下120min内对20mg/L的亚甲基蓝的降解率可达到97.1%。并且,与文献比较本方法操作简便,有利于节能和降低合成成本。
本发明提供一种在脉冲电场作用下合成颗粒增强金属基复合材料的新方法,属材料制备技术领域。该方法的主要工艺特征是在传统的熔体直接反应法制备颗粒增强复合材料的合成过程中对熔体施加脉冲电场,脉冲电流峰值密度为:1~10A/cm2,脉冲频率为:0.1~10Hz,脉冲电场处理熔体的时间为2~10min。本发明利用脉冲电场的电势振荡起伏、瞬态力效应及热效应的综合作用,促进原位反应中离子迁移和颗粒形核,并能抑制颗粒的长大,改善颗粒的分散性,因此采用该发明可以提高反应速率和产率,具有显著的颗粒形貌控制和促进分散的效果,适合工业规模制备高性能颗粒增强复合材料。
本发明公开了一种单向复合材料弯曲刚度的预测方法。提出了一种基于细观单胞的弯曲刚度修正公式用于单向复合材料等效弯曲刚度计算。根据三点弯曲试验,对建立的纤维‑界面‑基体三相细观单胞有限元模型进行三点弯曲数值模拟,施加周期性边界条件和位移载荷,得到模型的应力应变场和位移变形情况。提取施加载荷处截面的合力与模型的位移变形量,根据弯曲刚度计算公式得到单胞的弯曲刚度值。将单胞弯曲刚度值带入到提出的弯曲刚度修正公式,得到单向纤维复合材料的等效弯曲刚度。通过验证两种复合材料的预测值均接近于试验值,误差在5%以内,且精度高于无界面层模型,本发明能够准确地预测单向复合材料的弯曲刚度,节省宏观建模耗费的大量时间。
本发明属于纳米材料技术领域,公开了一种新型碘化银/氮杂石墨烯(AgI/NG)纳米复合材料的合成方法,具体涉及一种AgI/NG纳米复合材料的合成方法。本发明以氮杂石墨烯、硝酸银(AgNO3)氨水和离子液体为原料,采用一步湿化学法合成了AgI/NG纳米复合材料。本发明提供的AgI/NG纳米复合材料的合成方法合成工艺简单、条件温和;合成的AgI/NG纳米复合材料具有较好的光电化学活性,在光催化、光电化学领域等应用领域有着非常好的应用前景。
本发明涉及复合材料技术领域,具体是一种原位颗粒增强铝基复合材料制备方法。以无反应副产物的陶瓷反应粉剂作为增强体颗粒形成元素化合物代替传统的氟盐,将陶瓷反应粉剂烧结浸润、超声分散复合和液态成型相结合,有效解决复合材料制备过程中陶瓷反应粉剂不浸润、反应困难,生成的细小增强体大量团聚等问题。本发明具有绿色无污染、反应元素收得率高和增强体均匀性好的优势,可实现大尺寸复合材料构件的低成本、宏量化制备,有助于推动颗粒增强铝基复合材料的工程化应用。
本发明涉及铝基复合材料,特指一种汽车控制臂用高性能铝基复合材料的制备方法。其特征是首先将增强体反应物的“螺旋磁场约束控制”和“高能超声分散”相结合制备多元多尺度纳米复合强化剂,然后根据性能成分设计将适量的纳米复合强化剂直接加入至净化处理后的6X82合金熔体中并均匀化,最后通过优化改进的气模铸造系统规模化制备6X82基复合材料棒材。本发明具有多元多尺度纳米增强体反应生成效率高,复合材料中纳米增强体分布均匀,复合材料性能稳定的特点,适合规模化制备汽车控制臂用6X82基复合材料。
中冶有色为您提供最新的江苏镇江有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!