1.本发明属于大功率电气设备冷却技术领域,尤其涉及一种应用于储能电站的多级冷却系统及控制方法。
背景技术:
2.当前,新型储能面临从商业化初期向规模化发展转变的关键时期。基于电力发展现状,水力发电和风力发电高速发展,但均受制于风光资源时空分布不均匀的特性,电能输送存在波峰波谷,缺乏稳定电力输出,储能电站的建立在此背景下显得尤为重要。水冷系统作为电池储能电站的配套关键设备,市场已经铺开,相应的水冷产品更应规范成形,并进行技术升级迭代更新,以满足更多更大的市场需求。
3.储能电站是现代电力系统和智能电网的重要组成部分,也是实现可再生能源并网消纳及分布式发电高效应用的重要环节。相比于其它储能方式,电化学储能具有相应时间短、能量密度高、场地受限小等优势,尤其适用于城市储能系统。相比铅酸、钠酸等电化学储能系统而言,锂离子电池储能系统具有能量密度高、转换效率高、自放电率低、适用寿命长等优势。近年来随着电池技术的不断进步及其成本的降低,以锂离子电池为主的电化学储能系统得到了迅速发展和工程应用。然而,锂离子电池采用易燃的有机电解液,且材料体系热值高。在电池本体或电气设备发生故障后,电池温度失控引发链式分解反应,进而演化为储能系统燃烧爆炸等重大安全事故。例如,2021年4月16日北京丰台区一储能电站发生爆炸,造成2名消防员牺牲。国内外锂电池系统的工程应用均有火灾事故发生,造成了严重的经济损失及社会影响。
4.温度对于锂离子电池的容量、功率和安全性都有很大的影响。大容量锂离子电池储能系统出现性能下降甚至安全事故的一个重要原因就是热管理系统设计不合理。现有储能电站大多采用空气冷却方式,以空调冷风作为冷源给电池降温。然而,储能系统在一个较为狭小的空间内聚集了大量锂离子电池,电池排列紧密,运行工况复杂多变;基于空气冷却的热管理系统虽然简单、可靠性高,但其热容低、换热系数有限,不足以应对储能系统日益提高的热管理需求;同时,空气冷却缺乏控制局部热失控蔓延的能力。
5.现有技术中,已投运的集中式储能电站均采用风冷型换热方式,存在电池换热不均、电芯温度波动及差异较大、冷却效率偏低,为此,现有技术1(cn113410539a)“储能电站冷却方法、系统、电子设备”,提出了电池管理系统基于采集的温度数据、电池模组的状态数据,获取电池产热功率;根据该电池产热功率,计算冷却水的流速;冷却装置中的工质
声明:
“应用于储能电站的多级冷却系统及控制方法与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)