完全可回收的阻隔性pe膜材及其制备方法和应用
技术领域
1.本发明涉及一种有机包装膜材料及其应用,属于高分子材料技术领域。
背景技术:
2.现有的尼龙共挤膜,因含有尼龙会降低薄膜制品的回收等级,且尼龙共挤膜成本高。
3.现有hdpe薄膜,因hdpe落镖冲击强度小,雾度大,容易撕裂,薄膜阻隔性低,从而限制了hdpe薄膜的使用范围。
4.现有的evoh共挤膜,因含有evoh也会降低薄膜制品的回收等级,且evoh共挤膜成本更高。
5.目前也有少量的全塑复合包装材料采用较为先进的吹塑evoh(乙烯-乙烯醇共聚物)共挤膜技术路线。在该技术路线内的工艺流程主要有以下两种。此外,由于受到现有膜材包装材料生产设备的限制,普遍难以加工出高厚度、高阻隔性且层间抗剥离强度高的复合膜材,大大限制了复合膜材在其他领域中的应用。
6.对于缓冲包装材料来说,要求材料有一定阻隔性,气体从薄膜中缓慢渗透出来,渗透越慢,缓冲包装产品保护时间越长。随着物流的交货时间缩短,目前国内物流基本在3-10天内交货,对材料的阻隔性要求降低。另外,国家对快递物流材料的重复利用愈来愈重视,以下逐渐成为物流包装的发展趋势:1)一次性包装材料可重复多次利用;2)包装轻量化,节约资源,节约成本;3)单一材质材料更便于重复利用。基于此,纯pe膜材产品回收后能很好地二次重复利用,适用范围大,但现有的纯pe膜材阻隔性差,氧气透过率(otr)在2000~10000cm3/m2.day,透水率(wvtr)在1~10g/m2.day;用于缓冲包装等产品时,因透气率大,薄膜充气后渗漏快,保气时间短,储存时间短,包装运输途中容易损坏,不能有效保护内容物。
技术实现要素:
7.本发明的目的在于克服现有技术中存在的至少一项技术难题,提出一种绿色环保、力学性能好、阻隔性较好或成本低或综合性能优异的完全可回收的阻隔性pe膜材。
8.本发明提出的技术方案为一种完全可回收的阻隔性pe膜材,包含三层或五层以上相互叠加的膜层结构,所述膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中至少包含一层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层。
9.在现有技术人员的思维惯性中,hdpe膜材偏硬,而中低密度pe膜材偏软,一般不会采用将hdpe膜材与ldpe膜材相结合的方式制作复合膜材,即使勉强复合一层hdpe也会导致最终的复合膜材变脆,并不利于后续的加工和应用。而本发明的上述技术方案中,通过引入至少包含两层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层,可以有效解决膜材的完全可回收与阻隔性的平衡问题;另外通过采用至少五层的膜层结构再配合至少两层的hdpe层,便可有效解决复合膜材的脆性问题,便于后续加工和应用。
10.上述的完全可回收的阻隔性pe膜材,优选的,所述各个膜层中作为基材的聚乙烯
类高分子材料的含量至少在95%以上。为了能够实现更高的环保标准,实现膜材的完全可回收,采用本发明的技术方案特别适合接近纯pe的复合膜材结构,即尽可能少在膜层中添加其他非pe且不便回收的成分,这样更有利于本发明产品在高等级环保标准下的具体应用,实现循环经济。
11.上述的完全可回收的阻隔性pe膜材,为了更好地提升阻隔性,优选的,所述hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量在90%以上。
12.上述的完全可回收的阻隔性pe膜材,为了进一步提升阻氧和阻水性能,优选的,所述高密度聚乙烯类高分子材料的相对密度为0.950~0.970,优选0.960~0.970,特别优选的所述高密度聚乙烯类高分子材料的相对密度达到0.965~0.970。
13.上述的完全可回收的阻隔性pe膜材,优选的,为了更好地平衡hdpe层与非hdpe层之间的结合性、结合强度,提升复合膜材的整体性能,所述膜层结构采用以下两种结构中的任意一种:
14.结构一:所述膜层结构中至少包含两层的hdpe功能层,所述hdpe功能层与膜层结构中的非hdpe功能层交替叠层布置;
15.结构二:所述膜层结构为奇数层结构,仅包含1-3层hdpe功能层,其余为非hdpe功能层,且全部的hdpe功能层集中在膜层结构的中心。
16.上述的完全可回收的阻隔性pe膜材,优选的,所述非hdpe功能层是以茂金属线性低密度聚乙烯材料作为基材。
17.上述的完全可回收的阻隔性pe膜材,优选的,所述膜层结构中包含2-3层的hdpe功能层,且hdpe功能层不设置在膜层结构的最外侧,以防止膜材变脆或者两侧的脆性不一致。然而,hdpe功能层设置在外侧时可以用于葫芦膜等低端缓冲袋产品,避免出现耐热性问题。
18.上述的完全可回收的阻隔性pe膜材,优选的,所述阻隔性pe膜材包含三层(三层是指在五层以上的结构中如果相邻层的pe密度非常接近时可视为一层)、五层、七层或九层相互叠加的膜层结构。更优选的,所述膜层结构的最中心膜层为hdpe功能层,在最中心膜层两侧采用对称布置的方式设置膜层材料。采用这样的奇数层结构且对称布置的方式,更有利于采用通用的模具进行加工制备,且更符合上述本发明的膜层结构设计方式,进而提升复合膜材的整体性能,达到柔韧性、阻隔性及经济性的最佳平衡。
19.上述的完全可回收的阻隔性pe膜材,优选的,所述阻隔性pe膜材的各膜层之间不能剥离。
20.在现有的各类吹塑共挤全塑复合膜产品中,由于受到加工设备及加工工艺的限制,当复合膜材要做到很厚或很薄时,往往通过淋膜、层压或其他二次粘结方式将各膜层复合成一体,此类产品的加工设备简单、成熟,但成型的复合膜产品层间复合牢度较差,各层难以紧密粘合成一整体,在利用常规方法(例如gb/t 8808-1988《软质复合塑料材料剥离试验方法》等公知的常规测试方法)对其进行测试时,各层之间能够很容易进行剥离。然而本发明通过改进现有加工设计方案,使各层材料可在吹膜机中直接一次吹塑成型,制备得到的复合膜材各功能层之间可直接紧密粘合成一整体,且各层之间不易剥离,粘结牢固,能够更好地维持其膜材的阻隔性,且实现全pe复合,可循环回收利用。由于各膜层是一次吹塑成型得到,因此层与层之间的复合牢度可以达到很高,显著高于现有的复合膜材。
21.上述的完全可回收的阻隔性pe膜材,优选的,所述阻隔性pe膜材包含的各膜层是
通过吹膜工艺一次共挤出成型得到。由于囿于现有吹塑工艺及吹膜机的局限,本领域普通技术人员很难想到采用一次吹膜成型方式制备得到本发明的pe膜材,现有的吹膜机在加工制备共挤膜产品时,主要应用于含尼龙或evoh中间阻隔层的复合膜,但很难进行多膜层、大厚度的一次吹膜成型,勉强吹出的多膜层结构往往复合牢度差,且容易出现褶皱、不平整,且难以分切,成膜质量较差。而本发明通过对成膜工艺及系统的配套改进,使得pe膜材包含的各膜层可以通过吹膜工艺一次共挤出成型得到,进而大大改善了pe膜材的微观结构及连接关系,显著提升了膜材的质量。基于本发明的一次吹塑共挤成型工艺,使得产品在显微电镜下显示的多膜层结构中不含有常规的淋膜复合层、层压粘结层或其他粘结过渡层,可与现有的复合膜材明显区分开来。
22.上述的完全可回收的阻隔性pe膜材,优选的,所述阻隔性pe膜材的总厚度为15~500微米,优选20~400微米。由于本发明的工艺改进,不论在大厚度或小厚度的阻隔膜材中,本发明产品及工艺的优势均可得到体现,且有利于后期在各类厚度的包装膜材中进行应用。
23.上述的完全可回收的阻隔性pe膜材,优选的,所述阻隔性pe膜材的厚度在75微米以上时,其透氧率(otr)50~600cm3/m2.day,透水率(wvtr)在0~2.6g/m2.day;所述阻隔性pe膜材的厚度小于75微米时,其透氧率(otr)在300~3000cm3/m2.day,透水率(wvtr)在0.5~20g/m2.day。
24.上述的完全可回收的阻隔性pe膜材,优选的,所述高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数在10%~80%,优选30%~60%。相比现有技术的纯pe膜材,通过降低ldpe的含量并显著提高hdpe层的含量,可以使片材更加硬挺、挺度提升,还可提高阻隔性。
25.上述的完全可回收的阻隔性pe膜材,优选的,可以在所述膜材上再复合有一层pe印刷膜。
26.作为一个总的技术构思,本发明还提供一种上述的阻隔性pe膜材的应用,特别优选的,将所述阻隔性pe膜材应用于各类产业用的包装材料或缓冲袋材料,例如食品、药品、工业、物流缓冲包装的底膜、气阀膜、葫芦膜或填充膜。
27.更优选的,将所述阻隔性pe膜材应用于气柱袋,且所述气柱袋的上、下底膜和气阀膜均采用所述阻隔性pe膜材。
28.更优选的,将相同配方或不同配方的多层所述阻隔性pe膜材制作成复合型全pe膜材结构,或者将相同配方或不同配方的多层所述阻隔性pe膜材通过无溶剂复合方式制作成复合型全pe膜材结构,应用于缓冲包装产品。
29.作为一个总的技术构思,本发明还提供一种上述的完全可回收的阻隔性pe膜材的制备方法,所述制备方法包括进料、加热熔融、共挤出、吹膜冷却定型、牵引、收卷多个步骤;
30.所述进料过程中,各膜层均采用pe原料粒子在自动称重系统中按设定配方中的配比直接添加到挤出机的料斗内;
31.所述吹膜冷却定型阶段为一次吹膜成型得到全部的膜层,且在所述牵引过程中增加进行一膜材拉伸延展操作;
32.所述挤出机的数量在五台以上且与拟制备的膜材的层数对应一致;所述吹膜机的模头中流道数量在五条以上且与拟制备的膜材的层数一致。
33.在膜材总厚度较厚的情形下,片材一次吹膜成型,可大大降低成本,提高效率,提高膜材产品的成型质量。更优选的,所述吹膜冷却定型后的膜体经过一人字夹板夹扁后进行牵引,且在牵引过程中通过一拉伸延展机构进行拉伸延展操作,所述拉伸延展机构中设有膜体加热装置和膜体冷却装置,通过反复冷热交替进行拉伸延展。
34.上述的制备方法,优选的,经过所述拉伸延展操作的膜体在输送过程中进行一次二次冷却定型操作,所述二次冷却定型操作通过一风环冷却装置施加在膜体上,且二次冷却定型后的膜体温度控制在30℃~50℃,二次冷却定型操作优选设置在分切操作的上游或下游附近位置。
35.上述的制备方法,优选的,所述吹膜成型步骤中,膜体通过风环冷却定型,膜体的吹胀比为1~3,膜体的牵引比为4~6。
36.上述的制备方法,优选的,所述二次冷却定型完成的膜体经牵引辊牵引,最终输送至收卷辊处进行收卷,所述牵引辊之后的滚筒内还可设置有对经过二次冷却定型后的膜料进行继续加热的加热辊组或进行继续冷却的冷却辊组,对膜材进行反复加热和冷却以对最终收卷前的瑕疵进行再一次的矫正。
37.上述的制备方法,优选的,所述二次冷却定型、收卷步骤中两层薄膜分开进行。
38.作为一个总的技术构思,本发明还提供一种用于制备完全可回收的阻隔性pe膜材的加工系统,包括料斗、吹膜机、挤出机、输送装置、拉伸延展机构、分切装置和收卷装置,所述料斗连接挤出机,多个所述的挤出机连接在所述吹膜机的底部,所述吹膜机顶部输出的膜材通过输送装置连接经过一拉伸延展机构,经过拉伸延展机构输出的膜材最终连接至分切装置和收卷装置。所述拉伸延展机构中设有输送装置的输送通道,且输送通道内设有对膜体进行反复冷热交替的膜体加热装置和膜体冷却装置。现有的吹膜机加工系统中,未见有采用拉伸延展机构,而这套装置的配置正是基于一次性吹膜加工需要,保证吹膜冷却成型的中间产品经过进一步的延展处理,防止膜产品在一次吹膜过程产生的瑕疵进入到后续步骤,保证膜产品的质量。
39.上述的加工系统,优选的,针对本发明吹膜加工系统的特点,我们提出了在吹膜机顶部的下游增设冷热交替式的拉伸延展机构,这不仅便于集成到现有的加工系统中,而且成本低,便于控制膜体的质量。
40.上述的加工系统,更优选的,经过所述拉伸延展机构输出的膜材再通过输送装置连接经过一二次冷却定型装置,最终再连接至收卷装置;所述二次冷却定型装置布置在分切装置上游或下游附近。所述二次冷却定型装置包括施加在膜材上的风环冷却装置。所述二次冷却定型装置还包括设置在风环冷却装置前进行交替冷热处理的加热辊组和冷却辊组,所述加热辊组和冷却辊组布置成对膜材进行水平辊压方式。这主要是考虑在二次冷却定型前如果还遇有膜体质量不达标的情形,可以在定型前进行一次冷热交替辊道加热的弥补,这不仅成本低,方便操作,而且能够进一步提升膜材的稳定性。
41.上述的加工系统,更优选的,所述挤出机的数量与拟制备的膜材的层数对应一致。所述吹膜机的模头中流道数量的配置与拟制备的膜材的层数一致。更优选的,位于模头内的单个流道的宽度大于该单个流道在风环冷却出料处的开口尺寸。将流道的宽度设计成大于开口尺寸,能增加开口附近出料的挤压力,且使得模头内的介质流动及出料更加顺畅。
42.上述的加工系统,更优选的,所述分切装置的切刀由一振动机构驱动。更优选的,
所述振动机构包括驱动切刀进行水平方向振动的横向振动机构和驱动切刀进行竖直方向振动的竖向振动机构。考虑到本发明厚膜产品在分切时的不便,我们在分切装置中增加了振动驱动机构,且采用复合振动方式更有利于分切的便利和高效。
43.与现有技术相比,本发明的有益效果为:
44.1.本发明优化了纯pe的膜层结构,以便膜材可完全回收和重复利用;有利于节约资源和达到更高的环保标准(例如欧盟环保回收要求);
45.2.本发明的阻隔性pe膜材的阻隔性能优良,otr 75u最低可达300cm3/m2.day(otr不受湿度影响,在90%湿度下,otr阻氧性能不变;随着膜材厚度的增加,otr最低可达50cm3/m2.day;
46.3.本发明的阻隔性pe膜材的阻水性能优良,wvtr 75u一般《5g/m2.day;随着膜材厚度的增加,wvtr指标最低可达0.2g/m2.day,甚至更低;
47.4.本发明的阻隔性pe膜材的薄膜光泽度高;具有良好的印刷适应性;
48.5.本发明的阻隔性pe膜材的雾度基本《30%,透明度好,可清晰看到包装内容物。
49.6.通过本发明的工艺操作优化其他层的设计可以进一步降低成本,同时达到较好的高阻隔性、较高保气性;进一步简化工艺步骤和产品厚度,进而进一步降低成本。
附图说明
50.图1为本发明实施例1的阻隔性pe膜材的电镜照片。
51.图2为本发明阻隔性pe膜材制备方法的工艺原理示意图。
52.图3为本发明阻隔性pe膜材加工系统的结构示意图。
53.图4为本发明阻隔性pe膜材加工系统的拉伸延展机构局部放大图。
54.图5为本发明阻隔性pe膜材加工系统中吹膜机模头的外形图。
55.图6为本发明阻隔性pe膜材加工系统的分切装置和收卷装置的局部放大图。
56.图7为本发明实施例2的阻隔性pe膜材的电镜照片。
57.图8为本发明实施例3的阻隔性pe膜材的电镜照片。
58.图9为本发明实施例4的阻隔性pe膜材的电镜照片。
59.图10为本发明实施例5的阻隔性pe膜材的电镜照片。
60.图11为本发明实施例6的阻隔性pe膜材的电镜照片。
61.图12为本发明实施例7的阻隔性pe膜材的电镜照片。
62.图13为本发明应用实施例1得到的产品照片。
63.图14为本发明应用实施例2、3得到的产品照片。
64.图例说明:
65.1、料斗;2、吹膜机;21、模头;22、流道;23、流道开口;3、挤出机;4、输送装置;5、拉伸延展机构;51、膜体加热装置;52、膜体冷却装置;6、分切装置;61、横向振动机构;62、竖向振动机构;7、收卷装置;8、二次冷却定型装置。
具体实施方式
66.为了便于理解本发明,下文将本发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
67.除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
68.除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
69.实施例1:
70.一种如图1所示本发明完全可回收的阻隔性pe膜材,包含七层相互叠加的膜层结构,膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中包含三层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层。
71.本实施例的阻隔性pe膜材的结构具体如表1所示,包含mlldpe/hdpe/mlldpe/hdpe/mlldpe/hdpe/mlldpe的七层结构,其中的hdpe功能层与膜层结构中的非hdpe功能层(即mlldpe功能层)呈交替叠层布置,且各非hdpe功能层均是以茂金属线性低密度聚乙烯材料作为基材。膜层结构的最中心膜层为hdpe功能层,在最中心膜层两侧按照hdpe功能层与非hdpe功能层交替布置的方式设置。
72.如下表1所示,各个膜层中作为基材的聚乙烯类高分子材料的含量至少在95%以上,而各hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量均为100%(即纯hdpe),各hdpe功能层中高密度聚乙烯类高分子材料的相对密度均在0.960以上。
73.本实施例的阻隔性pe膜材包含的各膜层是通过吹膜工艺一次共挤出成型得到(具体见下文的制备工艺)。采用常规复合膜材料剥离强度测试时(例如gb/t 8808-1988《软质复合塑料材料剥离试验方法》等常规测试方法)不能在各层之间进行有效剥离,各层之间的剥离强度均大于15n/15mm。该阻隔性pe膜材的总厚度约为22微米(此处为测算的平均厚度,各层的设计厚度与图1中测得的某一点值厚度会有少许差异),其中高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数约为43%。各层的组分设计及层厚比参数如下表1所示。
74.表1:实施例1中阻隔性pe膜材参数设计表
[0075][0076][0077]
如图2所示,本实施例的阻隔性pe膜材的制备方法,包括进料、加热熔融、共挤出、吹膜冷却定型、牵引、收卷多个步骤,具体操作如下:
[0078]
s1:将上述交替布置的l2-l8各层的原料粒子分别由各自的储罐输送至各挤出机
的料斗处;在输送过程中,原料粒子经过自动称重系统,原料粒子在自动称重系统中按配方中的配比添加到各挤出机的料斗内,在输送过程中即完成了材料的配比,实现计量精确化,减少了加工过程中的称重过程。
[0079]
s2:本实施例中料斗为七个,分别用于存放每一层的原料粒子,其他实施例中根据膜层结构的不同还可以为5-9个不等或者更多,还可增设部分料斗用于存放功能助剂;原料粒子分别存放于不同料斗中,方便运送,也方便调整各组分的配比,适用于不同材料配比的情况,使整个加工装置更为灵活;料斗上料后,各原料粒子在挤出机中经加热、熔融、分配、共挤出、风环冷却定型,得到一次成型的膜体。
[0080]
s3:膜体通过风环冷却定型时,膜体的吹胀比一般为1~3,膜体的牵引比为4~6,使膜料达到预设的厚度。
[0081]
s4:风环冷却定型后的膜体经过人字夹板夹扁后通过牵引形成两层薄膜,一同进入一拉伸延展机构进行拉伸延展操作,拉伸延展机构中设有膜体加热装置和膜体冷却装置,通过反复冷热交替进行膜拉伸延展。
[0082]
s5:经膜拉伸延展操作后的膜体在输送过程中可进行二次冷却定型操作(但该操作不是必须的),二次冷却定型操作可以通过一风环冷却装置施加在膜体上,也可通过多组水平设置的加热辊组和冷却辊组,用于使膜料更为平整,性能更为均匀。膜材在滚筒中移动以使材料更加平整,性能更加均匀,每种成分的物理功能发挥到极致。
[0083]
s6:二次冷却定型完成的膜体经过牵引辊牵引、后加工处理和冷却,输送至收卷辊处进行收卷。具体地,牵引辊之后的滚筒内还可根据需要设置加热辊组和冷却辊组,加热辊组和冷却辊组交替设置,对膜材进行反复加热和冷却,使滚筒可对经过二次冷却定型后的膜料进行继续加热或冷却,使材料的硬度提高,延展性能更好。后加工处理为电晕和切边,薄膜经过后加工处理后,两层薄膜分别进行冷却定型收卷。
[0084]
实施例的制备方法实现了上述阻隔性pe膜材材料一次直接成型,可以进行物流缓冲包装、气柱袋、气阀膜的底膜等包装材料的制作,工艺上化繁为简,成本降低。阻隔性pe膜材工艺的特性使材料在食品、药品、工业、物流缓冲包装领域具有厚度均匀、阻隔性好、加工效率高、材料成本低、完全可回收和绿色环保等优势。
[0085]
一种如图3所示的用于制备上述阻隔性pe膜材的加工系统,包括料斗1、吹膜机2、多个挤出机3、输送装置4、拉伸延展机构5、分切装置6和收卷装置7,料斗1连接挤出机3,多个挤出机3连接在吹膜机2的底部,多个挤出机3的数量与拟制备的阻隔性pe膜材的层数对应一致,吹膜机2顶部输出的膜材通过输送装置4连接经过拉伸延展机构5,经过拉伸延展机构5输出的膜材最终连接至分切装置6和收卷装置7。
[0086]
图4为拉伸延展机构5的局部放大图,由图4可见,拉伸延展机构5内设有容纳输送装置4的输送通道,且输送通道内设有对膜体进行冷热交替处理的膜体加热装置51和膜体冷却装置52。拉伸延展机构5布置在吹膜机2的出料处附近(本实施例中布置在吹膜机2的顶部),且膜体加热装置51和膜体冷却装置52交替设置有多组。
[0087]
如图3所示,经过拉伸延展机构5输出的膜材再通过输送装置4可选择性地连接经过一二次冷却定型装置8,二次冷却定型装置8与分切装置6和收卷装置7连接。该二次冷却定型装置8包括施加在膜材上的风环冷却装置,还包括设置在风环冷却装置前进行交替冷热处理的加热辊组和冷却辊组,加热辊组和冷却辊组布置成对膜材进行水平辊压方式(参
见图2)。
[0088]
如图5所示,吹膜机2的模头21中流道22数量的配置与拟制备的膜材的层数一致,且位于模头21内的单个流道22的宽度大于该单个流道22在风环冷却出料处的流道开口23的尺寸。
[0089]
如图6所示,本实施例加工系统中的分切装置6的切刀由一振动机构驱动。当膜材较厚时,该振动机构可包括驱动切刀进行水平方向振动的横向振动机构61和驱动切刀进行竖直方向振动的竖向振动机构62。
[0090]
实施例2:
[0091]
一种如图7所示本发明完全可回收的阻隔性pe膜材,包含七层相互叠加的膜层结构,膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中包含三层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层。
[0092]
本实施例的阻隔性pe膜材的结构具体如表2所示,包含mlldpe/hdpe/mlldpe/hdpe/mlldpe/hdpe/mlldpe的七层结构,其中的hdpe功能层与膜层结构中的非hdpe功能层(即mlldpe功能层)呈交替叠层布置,且各非hdpe功能层均是以茂金属线性低密度聚乙烯材料作为基材。膜层结构的最中心膜层为hdpe功能层,在最中心膜层两侧按照hdpe功能层与非hdpe功能层交替布置的方式设置。
[0093]
如下表2所示,各个膜层中作为基材的聚乙烯类高分子材料的含量至少在95%以上,而各hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量均为100%(即纯hdpe),各hdpe功能层中高密度聚乙烯类高分子材料的相对密度均在0.961以上。
[0094]
本实施例的阻隔性pe膜材包含的各膜层是通过吹膜工艺一次共挤出成型得到。采用常规复合膜材料剥离强度测试时(例如gb/t 8808-1988《软质复合塑料材料剥离试验方法》等常规测试方法)不能在各层之间进行有效剥离,各层之间的剥离强度均大于15n/15mm。该阻隔性pe膜材的总厚度约为72微米(此处为测算的平均厚度,各层设计厚度与图7中测得的某一点值厚度会有少许差异),其中高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数约为50%。各层的组分设计及层厚比参数如下表2所示。
[0095]
表2:实施例2中阻隔性pe膜材参数设计表
[0096][0097]
本实施例阻隔性pe膜材的制备工艺参考实施例1即可。
[0098]
实施例的制备方法实现了上述阻隔性pe膜材材料一次直接成型,可以进行物流缓
冲包装、气柱袋、气阀膜的底膜等包装材料的制作,工艺上化繁为简,成本降低。阻隔性pe膜材工艺的特性使材料在食品、药品、工业、物流缓冲包装领域具有厚度均匀、阻隔性好、加工效率高、材料成本低、完全可回收和绿色环保等优势。
[0099]
实施例3:
[0100]
一种如图8所示本发明完全可回收的阻隔性pe膜材,包含七层相互叠加的膜层结构,膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中包含两层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层。
[0101]
本实施例的阻隔性pe膜材的结构具体如表3所示,包含mlldpe/hdpe/mlldpe/lldpe/mlldpe/hdpe/mlldpe的七层结构(还可以是mlldpe/mlldpe/hdpe/lldpe/hdpe/mlldpe/mlldpe),其中的hdpe功能层与膜层结构中的非hdpe功能层(即mlldpe功能层)并非呈完全的交替叠层布置。膜层结构的最中心膜层为lldpe功能层,在最中心膜层两侧按照hdpe功能层与非hdpe功能层交替布置的对称方式设置。除中心层外的各非hdpe功能层均是以茂金属线性低密度聚乙烯材料作为基材。
[0102]
如下表3所示,各个膜层中作为基材的聚乙烯类高分子材料的含量至少在95%以上,而各hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量均为100%(即纯hdpe),各hdpe功能层中高密度聚乙烯类高分子材料的相对密度均在0.967。
[0103]
本实施例的阻隔性pe膜材包含的各膜层是通过吹膜工艺一次共挤出成型得到。采用常规复合膜材料剥离强度测试时(例如gb/t 8808-1988《软质复合塑料材料剥离试验方法》等常规测试方法)不能在各层之间进行有效剥离,各层之间的剥离强度均大于15n/15mm。该阻隔性pe膜材的总厚度约为78微米,其中高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数约为46%。各层的组分设计及层厚比参数如下表3所示。
[0104]
表3:实施例3中阻隔性pe膜材参数设计表
[0105][0106]
本实施例阻隔性pe膜材的制备工艺参考实施例1即可。
[0107]
实施例的制备方法实现了上述阻隔性pe膜材材料一次直接成型,可以进行物流缓冲包装、气柱袋、气阀膜的底膜等包装材料的制作,工艺上化繁为简,成本降低。阻隔性pe膜材工艺的特性使材料在食品、药品、工业、物流缓冲包装领域具有厚度均匀、阻隔性好、加工效率高、材料成本低、完全可回收和绿色环保等优势。
[0108]
实施例4:
[0109]
一种如图9所示本发明完全可回收的阻隔性pe膜材,包含七层相互叠加的膜层结构,膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中包含三层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层。
[0110]
本实施例的阻隔性pe膜材的结构具体如表4所示,包含mlldpe/hdpe/mlldpe/hdpe/mlldpe/hdpe/mlldpe的七层结构,其中的hdpe功能层与膜层结构中的非hdpe功能层(即mlldpe功能层)呈交替叠层布置,且各非hdpe功能层均是以茂金属线性低密度聚乙烯材料作为基材。膜层结构的最中心膜层为hdpe功能层,在最中心膜层两侧按照hdpe功能层与非hdpe功能层交替布置的方式设置。
[0111]
如下表4所示,各个膜层中作为基材的聚乙烯类高分子材料的含量均为100%(即无其他添加剂,但微量的杂质不予考虑),各hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量同样均为100%(即纯hdpe),各hdpe功能层中高密度聚乙烯类高分子材料的相对密度均在0.967。
[0112]
本实施例的阻隔性pe膜材包含的各膜层是通过吹膜工艺一次共挤出成型得到。采用常规复合膜材料剥离强度测试时(例如gb/t 8808-1988《软质复合塑料材料剥离试验方法》等常规测试方法)不能在各层之间进行有效剥离,各层之间的剥离强度均大于15n/15mm。该阻隔性pe膜材的总厚度约为142微米,其中高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数约为50%。各层的组分设计及层厚比参数如下表4所示。
[0113]
表4:实施例4中阻隔性pe膜材参数设计表
[0114][0115]
本实施例阻隔性pe膜材的制备工艺参考实施例1即可。
[0116]
实施例的制备方法实现了上述阻隔性pe膜材材料一次直接成型,可以进行片材等包装材料的制作,工艺上化繁为简,成本降低。阻隔性pe膜材工艺的特性使材料在食品、药品、工业领域具有厚度均匀、阻隔性好、加工效率高、材料成本低、完全可回收和绿色环保等优势。
[0117]
实施例5:
[0118]
一种如图10所示本发明完全可回收的阻隔性pe膜材,包含七层相互叠加的膜层结构,膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中包含三层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层。
[0119]
本实施例的阻隔性pe膜材的结构具体如表5所示,包含mlldpe/hdpe/mlldpe/
hdpe/mlldpe/hdpe/mlldpe的七层结构,其中的hdpe功能层与膜层结构中的非hdpe功能层(即mlldpe功能层)呈交替叠层布置,且各非hdpe功能层均是以茂金属线性低密度聚乙烯材料作为基材。膜层结构的最中心膜层为hdpe功能层,在最中心膜层两侧按照hdpe功能层与非hdpe功能层交替布置的方式设置。
[0120]
如下表5所示,各个膜层中作为基材的聚乙烯类高分子材料的含量均为100%(即无其他添加剂,但微量的杂质不予考虑),各hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量同样均为100%(即纯hdpe),各hdpe功能层中高密度聚乙烯类高分子材料的相对密度均在0.960以上。
[0121]
本实施例的阻隔性pe膜材包含的各膜层是通过吹膜工艺一次共挤出成型得到。采用常规复合膜材料剥离强度测试时(例如gb/t 8808-1988《软质复合塑料材料剥离试验方法》等常规测试方法)不能在各层之间进行有效剥离,各层之间的剥离强度均大于15n/15mm。该阻隔性pe膜材的总厚度约为282微米,其中高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数约为50%。各层的组分设计及层厚比参数如下表5所示。
[0122]
表5:实施例5中阻隔性pe膜材参数设计表
[0123][0124]
本实施例阻隔性pe膜材的制备工艺参考实施例1即可。
[0125]
实施例的制备方法实现了上述阻隔性pe膜材材料一次直接成型,可以进行片材等包装材料的制作,工艺上化繁为简,成本降低。阻隔性pe膜材工艺的特性使材料在食品、药品、工业领域具有厚度均匀、阻隔性好、加工效率高、材料成本低、完全可回收和绿色环保等优势。
[0126]
以上本发明实施例1-5的阻隔性pe膜材的性能对比测试数据如下表6所示:
[0127]
表6:各实施例中阻隔性pe膜材性能参数对比实验表
[0128][0129]
实施例6:
[0130]
一种如图11所示本发明完全可回收的阻隔性pe膜材,包含五层相互叠加的膜层结构,膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中包含一层以高密度聚乙烯类高分子材料作为基材的hdpe功能层。
[0131]
本实施例的阻隔性pe膜材的结构具体如表7所示,包含mlldpe/lldpe/hdpe/lldpe/mlldpe的五层结构(部分相邻层因pe的密度比较接近,因此在图中的分界可能不明显),各非hdpe功能层可以是以茂金属线性低密度聚乙烯材料或其他中低密度聚乙烯作为基材。膜层结构的最中心膜层为hdpe功能层,在最中心膜层两侧均为非hdpe功能层。考虑到l2层和l4层的膜材密度非常接近,也可以将本实施例膜材作为三层的膜层结构。
[0132]
如下表7所示,部分膜层中作为基材的聚乙烯类高分子材料的含量均为100%(即无其他添加剂,但微量的杂质不予考虑),hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量同样均为100%(即纯hdpe),hdpe功能层中高密度聚乙烯类高分子材料的相对密度均在0.960以上。
[0133]
本实施例的阻隔性pe膜材包含的各膜层是通过吹膜工艺一次共挤出成型得到。采用常规复合膜材料剥离强度测试时(例如gb/t 8808-1988《软质复合塑料材料剥离试验方法》等常规测试方法)不能在各层之间进行有效剥离。该阻隔性pe膜材的总厚度约为70微米,其中高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数为40%。各层的组分设计及层厚比参数如下表7所示。
[0134]
表7:实施例6中阻隔性pe膜材参数设计表
[0135][0136]
本实施例阻隔性pe膜材的制备工艺参考实施例1即可。
[0137]
实施例的制备方法实现了上述阻隔性pe膜材材料一次直接成型,可以进行片材等包装材料的制作,工艺上化繁为简,成本降低。阻隔性pe膜材工艺的特性使材料在食品、药品、工业领域具有厚度均匀、阻隔性好、加工效率高、材料成本低、完全可回收和绿色环保等优势。
[0138]
实施例7:
[0139]
一种如图12所示本发明完全可回收的阻隔性pe膜材,包含七层相互叠加的膜层结构,膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中包含三层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层。
[0140]
本实施例的阻隔性pe膜材的结构具体如表8所示,包含七层结构,各非hdpe功能层可以是以茂金属线性低密度聚乙烯或低密度聚乙烯材料作为基材。膜层结构的最中心膜层为三层的hdpe功能层,在最中心膜层两侧均为非hdpe功能层(因mlldpe不同牌号的产品之间密度相近,性能相近,相容性好,所以层间界限不明显)。考虑到l2层和l4层的膜材密度非常接近,也可以将本实施例膜材作为三层的膜层结构。
[0141]
如下表8所示,部分膜层中作为基材的聚乙烯类高分子材料的含量均为100%(即无其他添加剂,但微量的杂质不予考虑),hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量均为100%(即纯hdpe),hdpe功能层中高密度聚乙烯类高分子材料的相对密度均在0.960以上。
[0142]
本实施例的阻隔性pe膜材包含的各膜层是通过吹膜工艺一次共挤出成型得到。采
用常规复合膜材料剥离强度测试时(例如gb/t 8808-1988《软质复合塑料材料剥离试验方法》等常规测试方法)不能在各层之间进行有效剥离。该阻隔性pe膜材的总厚度约为92微米,其中高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数约为35%。各层的组分设计及层厚比参数如下表8所示。
[0143]
表8:实施例7中阻隔性pe膜材参数设计表
[0144][0145]
本实施例阻隔性pe膜材的制备工艺参考实施例1即可。
[0146]
实施例的制备方法实现了上述阻隔性pe膜材材料一次直接成型,可以进行片材等包装材料的制作,工艺上化繁为简,成本降低。阻隔性pe膜材工艺的特性使材料在食品、药品、工业领域具有厚度均匀、阻隔性好、加工效率高、材料成本低、完全可回收和绿色环保等优势。
[0147]
以上本发明实施例6-7的阻隔性pe膜材的性能对比测试数据如下表9所示:
[0148]
表9:实施例6-7中阻隔性pe膜材性能参数对比实验表
[0149][0150]
应用实施例1:
[0151]
将上述实施例7的阻隔性pe膜材作为原材料,应用于加工制作缓冲包装用的气柱袋产品,具体采用常规的气柱袋生产设备及生产工艺即可,但气柱袋的上、下底膜均采用实施例7的阻隔性pe膜材,气阀膜可采用常规市售的气阀膜材料,加工出的气柱袋产品的照片如图13所示。
[0152]
应用实施例2:
[0153]
将上述实施例3的阻隔性pe膜材作为原材料,应用于加工制作大米包装袋或自立包装袋产品,具体采用常规的包装袋生产设备及生产工艺即可,但包装袋原材料采用实施例3的阻隔性pe膜材,再通过无溶剂的粘结剂再复合一层高密度pe膜即可,加工出的大米包装袋产品和自立包装袋产品的照片如图14所示。
[0154]
应用实施例3:
[0155]
将上述实施例5的阻隔性pe膜材作为原材料,应用于加工制作牙膏包装管材产品,具体采用常规的牙膏包装管材生产设备及生产工艺即可,但原材料采用实施例5的阻隔性
pe膜材,加工出的牙膏包装管材产品的照片如图14所示。技术特征:
1.一种完全可回收的阻隔性pe膜材,包含三层或五层以上相互叠加的膜层结构,其特征在于,所述膜层结构中各个膜层的基材均为聚乙烯类高分子材料(pe),且膜层结构中至少包含一层的以高密度聚乙烯类高分子材料作为基材的hdpe功能层。2.根据权利要求1所述的阻隔性pe膜材,其特征在于,所述各个膜层中作为基材的聚乙烯类高分子材料的含量至少在95%以上。3.根据权利要求1所述的阻隔性pe膜材,其特征在于,所述hdpe功能层中作为基材的高密度聚乙烯类高分子材料的含量在90%以上。4.根据权利要求1所述的阻隔性pe膜材,其特征在于,所述高密度聚乙烯类高分子材料的相对密度为0.950~0.970,优选0.960~0.970,最优选0.965~0.970。5.根据权利要求1所述的阻隔性pe膜材,其特征在于,所述膜层结构采用以下两种结构中的任意一种:结构一:所述膜层结构中至少包含两层的hdpe功能层,所述hdpe功能层与膜层结构中的非hdpe功能层交替叠层布置;结构二:所述膜层结构为奇数层结构,仅包含1-3层hdpe功能层,其余为非hdpe功能层,且全部的hdpe功能层集中在膜层结构的中心。6.根据权利要求5所述的阻隔性pe膜材,其特征在于,所述非hdpe功能层是以茂金属线性低密度聚乙烯材料作为基材。7.根据权利要求5所述的阻隔性pe膜材,其特征在于,所述膜层结构中包含2-3层的hdpe功能层,且hdpe功能层不设置在膜层结构的最外侧。8.根据权利要求1~7中任一项所述的阻隔性pe膜材,其特征在于,所述阻隔性pe膜材包含三层、五层、七层或九层相互叠加的膜层结构,所述膜层结构的最中心膜层为hdpe功能层,在最中心膜层两侧采用对称布置的方式设置膜层材料。9.根据权利要求1~7中任一项所述的阻隔性pe膜材,其特征在于,所述阻隔性pe膜材的各膜层之间不能剥离;所述阻隔性pe膜材包含的各膜层是通过吹膜工艺一次共挤出成型得到。10.根据权利要求1~7中任一项所述的阻隔性pe膜材,其特征在于,所述阻隔性pe膜材的总厚度为15~500微米,优选20~400微米。11.根据权利要求10所述的阻隔性pe膜材,其特征在于,所述阻隔性pe膜材的厚度在75微米以上时,其透氧率(otr)在50~600cm3/m2.day,透水率(wvtr)在0~2.6g/m2.day;所述阻隔性pe膜材的厚度小于75微米时,其透氧率(otr)在300~3000cm3/m2.day,透水率(wvtr)在0.5~20g/m2.day。12.根据权利要求1~7中任一项所述的阻隔性pe膜材,其特征在于,所述高密度聚乙烯类高分子材料在阻隔性pe膜材中的体积分数在10%~80%,优选30%~60%。13.一种如权利要求1~12中任一项所述的阻隔性pe膜材的制备方法,其特征在于,所述制备方法包括进料、加热熔融、共挤出、吹膜冷却定型、牵引、收卷多个步骤;所述进料过程中,各膜层均采用pe原料粒子在自动称重系统中按设定配方中的配比直接添加到挤出机的料斗内;所述吹膜冷却定型阶段为一次吹膜成型得到全部的膜层,且在所述牵引过程中增加进行一膜材拉伸延展操作;所述挤出机的数量在五台以上且与拟制备的膜材的层数对应一致;所述吹膜机的模头中流道数量在五条以上且与拟制备的膜材的层
数一致。14.一种如权利要求1~12中任一项所述的阻隔性pe膜材的应用,其特征在于,将所述阻隔性pe膜材应用于各类产业用的包装材料或缓冲袋材料。15.根据权利要求14所述的应用,其特征在于,将所述阻隔性pe膜材应用于气柱袋,且所述气柱袋的上、下底膜均采用所述阻隔性pe膜材。16.根据权利要求14所述的应用,其特征在于,将相同配方或不同配方的多层所述阻隔性pe膜材制作成复合型全pe膜材结构,或者将相同配方或不同配方的多层所述阻隔性pe膜材通过无溶剂复合方式制作成复合型全pe膜材结构,应用于包装产品。
技术总结
本发明公开了一种完全可回收的阻隔性PE膜材,包含三层或五层以上相互叠加的膜层结构,其中各个膜层的基材均为PE材料,且膜层结构中至少包含一层的以高密度聚乙烯类高分子材料作为基材的HDPE功能层。该膜材的制备方法包括进料、加热熔融、共挤出、吹膜冷却定型、牵引、收卷等步骤;吹膜冷却定型阶段为一次吹膜成型得到全部的膜层,且在牵引过程中增加进行一膜材拉伸延展操作;挤出机的数量在五台以上且与拟制备的膜材的层数对应一致;吹膜机的模头中流道数量在五条以上且与拟制备的膜材的层数一致。本发明的膜材可应用于各类产业用的包装材料或缓冲袋材料。本发明的产品具有绿色环保、力学性能好、阻隔性好、成本低、综合性能优异等优点。优异等优点。优异等优点。
技术研发人员:汤亮 胡翔宇
受保护的技术使用者:广东福瑞杰
新材料有限公司
技术研发日:2021.02.04
技术公布日:2022/8/4
声明:
“完全可回收的阻隔性PE膜材及其制备方法和应用与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)