权利要求
1.基于轧制方法制备镁/钛层状波形界面复合材料的方法,其特征在于,包括以下步骤: S1.根据需要将若干块镁合金板和钛合金板分别进行退火韧化处理,钛合金板的退火韧化处理温度为730℃~780℃,保温时间为120~180min;镁合金板的退火韧化处理温度为350~400℃,保温时间为120~180min; S2.利用激光清洗分别对钛合金板和镁合金板的待复合表面进行处理,使新鲜金属露出,并通过控制激光清洗参数,在待复合表面上制备平行于板材宽度方向的微织构; 其中,镁合金板待复合面激光清洗的激光功率为50W~100W,扫描速率为2000mm/s~3000mm/s,激光束扫描线宽为35mm~45mm,镁合金板上微织构的深度为300μm~500μm;钛合金板待复合面激光清洗的激光功率为150W~200W,扫描速率为3500mm/s~4000mm/s,激光束扫描线宽为25mm~35mm,钛合金板上微织构的深度为500μm~800μm; S3.首先,将步骤S2制备的若干块镁合金板和钛合金板依次交替层叠组合,镁合金板待复合表面上微织构的波谷区与对应的钛合金板待复合表面上微织构的波峰相配合,镁合金板待复合表面上微织构的波峰区与对应的钛合金板待复合表面上微织构的波谷区相配合,制得层状复合坯料,并且层状复合坯料的上下两侧表面均为钛合金板;然后,用铝质铆钉将层叠的复合坯料固定,并将铝质铆钉固定的层状复合坯料放置于耐高温材料包裹中;最后,耐高温材料包裹抽真空并封套口,留待后步使用; S4.将步骤S3制得的耐高温材料包裹和层状复合坯料置于加热炉中进行轧制前预热处理,预热温度为550℃~600℃;预热时间为90min; S5.将步骤S4预热后的层状复合坯料进行热轧,首道次压下率为10%~15%,总压下率为30%~40%,轧制速度为0.5m/min~2m/min,制得镁/钛层状复合轧材; S6.将步骤S5制得的镁/钛层状复合轧材放入加热炉中进行退火处理,退火温度为350℃~400℃,保温时间为120min~180min,随炉冷却至室温,制得镁/钛层状波形界面复合材料。2.根据权利要求1所述的基于轧制方法制备镁/钛层状波形界面复合材料的方法,其特征在于:在所述步骤S2中,激光清洗过程中激光束与待复合表面相互垂直,激光束的焦点位于待复合表面上。 3.根据权利要求1所述的基于轧制方法制备镁/钛层状波形界面复合材料的方法,其特征在于:在所述步骤S2中,每一道微织构首尾相接,连续的微织构整体上呈蛇形沿板材的长度方向设置。 4.根据权利要求1所述的基于轧制方法制备镁/钛层状波形界面复合材料的方法,其特征在于:在所述步骤S2中,通过设置激光往复扫描次数控制微织构的深度。 5.根据权利要求1所述的基于轧制方法制备镁/钛层状波形界面复合材料的方法,其特征在于:在所述步骤S3中,镁合金板与钛合金板单层厚度比为(1~5):1,并且层状复合坯料的总厚度不大于50mm。 6.根据权利要求1所述的基于轧制方法制备镁/钛层状波形界面复合材料的方法,其特征在于:在所述步骤S3中,耐高温材料包裹抽真空后的真空度保持在0.01Pa~0.05Pa。 7.根据权利要求1所述的基于轧制方法制备镁/钛层状波形界面复合材料的方法,其特征在于:在所述步骤S3中,所述耐高温材料包裹的材质为耐高温陶瓷纤维。
说明书
技术领域
本发明属于复合材料制备技术领域,具体涉及的是一种基于轧制方法制备镁/钛层状波形界面复合材料的方法。
背景技术
钛及钛合金作为新型的高性能金属结构材料,具有良好的塑形和韧性以及足够的耐蚀性等特点,尤其是比强度较高,所以被广泛应用于航空航天、石油化工等高新技术领域,但其缺点是成本较高;镁是金属结构材料中最轻的一种,优点是比强度高、减震性好、价格低廉,但耐腐蚀和耐高温的性能较差。所以,若将钛和镁结合,制成钛/镁层状金属复合材料,其将兼有钛的高强度、耐蚀性、耐高温和镁的低比重、价格低廉的特点,在建筑、工业、国防等领域具有十分广阔的应用前景。
钛和镁的物理、化学性质相差很大,如熔点、导热系数、线膨胀系数等,不利于二者的复合。另外,结合Mg-Ti平衡二元相图知,Mg、Ti之间的固溶度非常小,且二者不会形成任何金属间化合物,冶金结合性差。除此之外,钛和镁都是活跃金属,很容易氧化,形成氧化层会阻碍钛和镁的结合。这些都是二者实现高强度复合时遇到的困难问题。
目前,制备钛/镁层状复合板的方法主要是爆炸焊接法和热轧复合法。
爆炸焊接法是利用炸药爆炸产生的冲击力,使钛合金板与镁合金板高速碰撞,实现钛与镁之间的冶金结合,界面为波状结合,结合强度高。但是,爆炸焊接法不仅存在能量消耗大、环境污染严重、工序繁杂、生产效率低和产品成本高等问题,而且无法连续化生产大尺寸大卷重层状复合材料。
当前,轧制法制备金属层状复合材料已经成为一种趋势,由于钛、镁两种金属的材料性能(变形抗力、塑性、导热性、熔点等)差异较大,在制备过程中主要存在两个问题,一是轧后钛镁变形极不协调,二是复合板界面为平直结合,结合强度偏低,界面易分层。
波形结合界面和平直界面是金属层状复合材料常规的结合界面,而波形结合界面是爆炸焊接复合板的特有界面,因为波形界面有利于扩大异种材料的冶金结合区,同时形成机械互锁效应,将会增加界面结合强度。轧制法制备复合板通常是平直的结合界面,强度较波形界面较低,后期弯曲、卷制等加工常出现界面分层。如果能够利用轧制法制备波形界面,将加大复合材料界面结合强度,有利于轧制复合材料后期再加工制造。
发明内容
本发明的目的是针对背景技术的不足,本发明提供一种基于轧制方法制备镁/钛层状波形界面复合材料的方法。
本发明的设计构思为:对镁合金板和钛合金板进行表面激光清洗,通过控制激光参数,在镁合金板和钛合金板的待复合界面制备平行于板材宽度方向微织构,镁合金板和钛合金板依次交替层叠组合形成层状复合坯料,然后进行热轧复合和退火处理,所制备的钛/镁层状复合材料界面为波形结合,波形界面扩大了钛、镁异种金属冶金结合区,同时波形界面产生机械互锁效益,有利于增加了镁/钛复合材料界面结合强度。
本发明采用以下技术方案予以实现:
基于轧制方法制备镁/钛层状波形界面复合材料的方法,包括以下步骤:
S1.根据需要将若干块镁合金板和钛合金板分别进行退火韧化处理,钛合金板的退火韧化处理温度为730℃~780℃,保温时间为120~180min;镁合金板的退火韧化处理温度为350~400℃,保温时间为120~180min;
S2.利用激光清洗分别对钛合金板和镁合金板的待复合表面进行处理,使新鲜金属露出,并通过控制激光清洗参数,在待复合表面上制备平行于板材宽度方向的微织构;
其中,镁合金板待复合面激光清洗的激光功率为50W~100W,扫描速率为2000mm/s~3000mm/s,激光束扫描线宽为35mm~45mm,镁合金板上微织构的深度为300μm~500μm;钛合金板待复合面激光清洗的激光功率为150W~200W,扫描速率为3500mm/s~4000mm/s,激光束扫描线宽为25mm~35mm,钛合金板上微织构的深度为500μm~800μm;
S3.首先,将步骤S2制备的若干块镁合金板和钛合金板依次交替层叠组合,镁合金板待复合表面上微织构的波谷区与对应的钛合金板待复合表面上微织构的波峰相配合,镁合金板待复合表面上微织构的波峰区与对应的钛合金板待复合表面上微织构的波谷区相配合,制得层状复合坯料,并且层状复合坯料的上下两侧表面均为钛合金板;然后,用铝质铆钉将层叠的复合坯料固定,并将铝质铆钉固定的层状复合坯料放置于耐高温材料包裹中;最后,耐高温材料包裹抽真空并封套口,留待后步使用;
S4.将步骤S3制得的耐高温材料包裹和层状复合坯料置于加热炉中进行轧制前预热处理,预热温度为550℃~600℃;预热时间为90min;
S5.将步骤S4预热后的层状复合坯料进行热轧,首道次压下率为10%~15%,总压下率为30%~40%,轧制速度为0.5m/min~2m/min,制得镁/钛层状复合轧材;
S6.将步骤S5制得的镁/钛层状复合轧材放入加热炉中进行退火处理,退火温度为350℃~400℃,保温时间为120min~180min,随炉冷却至室温,制得镁/钛层状波形界面复合材料。
进一步地,在所述步骤S2中,激光清洗过程中激光束与待复合表面相互垂直,激光束的焦点位于待复合表面上。
进一步地,在所述步骤S2中,每一道微织构首尾相接,连续的微织构整体上呈蛇形沿板材的长度方向设置。
进一步地,在所述步骤S2中,通过设置激光往复扫描次数控制微织构的深度。
进一步地,在所述步骤S3中,镁合金板与钛合金板单层厚度比为(1~5):1,并且层状复合坯料的总厚度不大于50mm。
进一步地,在所述步骤S3中,耐高温材料包裹抽真空后的真空度保持在0.01Pa~0.05Pa。
进一步地,在所述步骤S3中,所述耐高温材料包裹的材质为耐高温陶瓷纤维。
与现有技术相比本发明的有益效果为:
由Mg~Ti平衡二元相图知,Mg、Ti之间的固溶度非常小,且二者不会形成任何金属间化合物,很难在镁板和钛板之间形成冶金结合界面,而且传统的轧制方法制得的复合材料界面为平直界面。
本发明轧制前对镁合金板和钛合金板的待复合面进行激光清洗,制备微织构,然后进行轧制复合,使镁/钛连接界面产生波状结合面,增加冶金结合区域,同时产生机械互锁,增加了镁/钛复合材料的界面结合强度。此外,激光清洗方法相对于传统的化学清洗和机械清洗效率更好,且环保、无污染。
附图说明
图1为实施例1中钛-镁-钛三层层状复合材料轧制状态结构示意图;
图2为激光清洗路径;
图3为实施例1中层状复合坯料纵剖结构示意图;
图4为实施例1制得的复合材料波形结合界面微观形貌图;
图5为未激光清洗轧制镁/钛复合材料平直结合界面微观形貌图;
图6为实施例1制得的镁/钛复合材料界面元素扩散图。
图中:1为钛合金板,2为镁合金板,3为轧辊。
具体实施方式
下面结合说明书附图和实施例对本发明作进一步的详细描述。
实施例1
本实施例1选择一块AZ31B镁合金板和两块TA2钛合金板作为轧制复合的母材,AZ31B镁合金板的尺寸为:长度450mm×宽度300mm×厚度10mm,TA2钛合金板的尺寸为:长度450mm×宽度300mm×厚度2mm。
基于轧制方法制备镁/钛层状波形界面复合材料的方法,包括以下步骤:
S1.根据需要将镁合金板和钛合金板分别进行退火韧化处理,钛合金板的退火韧化处理温度为750℃,保温时间为150min;镁合金板的退火韧化处理温度为380℃,保温时间为150min;
S2.利用激光清洗分别对钛合金板和镁合金板的待复合表面进行处理,激光清洗过程中激光束与待复合表面相互垂直,激光束的焦点位于待复合表面上,使新鲜金属露出,并通过控制激光清洗参数,在待复合表面上制备平行于板材宽度方向的微织构,如图2所示;
其中,镁合金板待复合面(镁合金板的上表面和下表面)激光清洗的激光功率为75W,扫描速率为2500mm/s,激光束扫描线宽为40mm,镁合金板上微织构的深度为400μm;钛合金板待复合面(每一钛合金板的单面)激光清洗的激光功率为150W,扫描速率为4000mm/s,激光束扫描线宽为30mm,钛合金板上微织构的深度为600μm,通过控制激光往复扫描次数控制微织构深度,并且使钛合金表面的微织构深度大于镁合金板表面微织构深度;
S3.首先,将步骤S2制备的镁合金板和钛合金板按照钛-镁-钛的顺序由上至下依次交替层叠组合,如图3所示,镁合金板待复合表面上微织构的波谷区与对应的钛合金板待复合表面上微织构的波峰相配合,镁合金板待复合表面上微织构的波峰区与对应的钛合金板待复合表面上微织构的波谷区相配合,制得层状复合坯料,并且层状复合坯料的上下两侧表面均为钛合金板,本实施例1中层状复合坯料的厚度为14mm;然后,用铝质铆钉将层叠的复合坯料固定,并将铝质铆钉固定的层状复合坯料放置于耐高温材料包裹中,耐高温材料包裹的材质为耐高温陶瓷纤维;最后,耐高温材料包裹抽真空并封套口,耐高温材料包裹抽真空后的真空度保持在0.03Pa,留待后步使用;
S4.将步骤S3制得的耐高温材料包裹和层状复合坯料置于加热炉中进行轧制前预热处理,预热温度为600℃,预热时间为90min;
S5.如图1所示,将步骤S4预热后的层状复合坯料进行热轧,首道次压下率为15%,总压下率为40%,轧制速度为1m/min,制得镁/钛层状复合轧材;
S6.将步骤S5制得的镁/钛层状复合轧材放入加热炉中进行退火处理,退火温度为350℃,保温时间为180min,随炉冷却至室温,制得镁/钛层状波形界面复合材料。
进一步地,在所述步骤S3中,所述耐高温材料包裹的材质为耐高温陶瓷纤维。
按照GB/T7734-2015复合板超声波检验的要求对TA2/AZ31B/TA2波纹界面复合材料界面进行探伤,探伤结果表明TA2/AZ31B/TA2波纹界面复合板的结合率为99.8%;根据GB/T6369-2008,测试TA2/AZ31B/TA2波纹界面复合板界面拉剪强度,界面的拉剪强度为220MPa,对拉剪断裂界面进行面扫描分析,两断裂面的组成元素全部为镁,说明拉剪断裂发生在镁合金位置,而不是在界面位置,证明了基于轧制方法制备的TA2/AZ31B/TA2复合材料界面结合强度高;如图4所示,利用扫面电镜SEM观察复合界面,结合区域呈现出波形状,界面结合完好,无气孔、裂纹等缺陷。如图6所示,利用EDS在界面附近做线扫面分析,镁元素和钛元素发生扩散,说明两种材料通过扩散反应实现了冶金结合。
采用本实施例1的方法,区别仅在于轧制前采用常规方法处理表面,不进行激光清洗制备表面微织构,其他步骤相同,获得钛/镁界面为平直结合,如图5所示,接头强度为180MPa,接头沿钛/镁界面开裂。
实施例2
本实施例2选择一块AZ61镁合金板和两块TA2钛合金板作为轧制复合的母材,AZ61镁合金板的尺寸为:长度450mm×宽度300mm×厚度10mm,TA2钛合金板的尺寸为:长度450mm×宽度300mm×厚度2mm。
基于轧制方法制备镁/钛层状波形界面复合材料的方法,包括以下步骤:
S1.根据需要将镁合金板和钛合金板分别进行退火韧化处理,钛合金板的退火韧化处理温度为750℃,保温时间为150min;镁合金板的退火韧化处理温度为380℃,保温时间为150min;
S2.利用激光清洗分别对钛合金板和镁合金板的待复合表面进行处理,激光清洗过程中激光束与待复合表面相互垂直,激光束的焦点位于待复合表面上,使新鲜金属露出,并通过控制激光清洗参数,在待复合表面上制备平行于板材宽度方向的微织构;
其中,镁合金板待复合(镁合金板的上表面和下表面)面激光清洗的激光功率为75W,扫描速率为2500mm/s,激光束扫描线宽为40mm,镁合金板上微织构的深度为400μm;钛合金板待复合面(每一钛合金板的单面)激光清洗的激光功率为150W,扫描速率为3500mm/s,激光束扫描线宽为30mm,钛合金板上微织构的深度为650μm,通过控制激光往复扫描次数控制微织构深度,并且使钛合金表面的微织构深度大于镁合金板表面微织构深度;
S3.首先,将步骤S2制备的镁合金板和钛合金板按照钛-镁-钛的顺序由上至下依次交替层叠组合,镁合金板待复合表面上微织构的波谷区与对应的钛合金板待复合表面上微织构的波峰相配合,镁合金板待复合表面上微织构的波峰区与对应的钛合金板待复合表面上微织构的波谷区相配合,制得层状复合坯料,并且层状复合坯料的上下两侧表面均为钛合金板,本实施例2中层状复合坯料的厚度为14mm;然后,用铝质铆钉将层叠的复合坯料固定,并将铝质铆钉固定的层状复合坯料放置于耐高温材料包裹中,耐高温材料包裹的材质为耐高温陶瓷纤维;最后,耐高温材料包裹抽真空并封套口,耐高温材料包裹抽真空后的真空度保持在0.03Pa,留待后步使用;
S4.将步骤S3制得的耐高温材料包裹和层状复合坯料置于加热炉中进行轧制前预热处理,预热温度为600℃,预热时间为90min;
S5.将步骤S4预热后的层状复合坯料进行热轧,首道次压下率为15%,总压下率为40%,轧制速度为1m/min,制得镁/钛层状复合轧材;
S6.将步骤S5制得的镁/钛层状复合轧材放入加热炉中进行退火处理,退火温度为350℃,保温时间为180min,随炉冷却至室温,制得镁/钛层状波形界面复合材料。
进一步地,在所述步骤S3中,所述耐高温材料包裹的材质为耐高温陶瓷纤维。
按照GB/T7734-2015复合板超声波检验的要求对TA2/AZ61/TA2波纹界面复合材料界面进行探伤,探伤结果表明TA2/AZ61/TA2波纹界面复合板的结合率为99.8%;根据GB/T6369-2008,测试TA2/AZ61/TA2波纹界面复合板界面拉剪强度,界面的拉剪强度为210MPa,对拉剪断裂界面进行面扫描分析,两断裂面的组成元素全部为镁,说明拉剪断裂发生在镁合金位置,而不是在界面位置,证明了基于轧制方法制备的TA2/AZ61/TA2复合材料界面结合强度高;利用扫面电镜SEM观察复合界面,结合区域呈现出波形状,界面结合完好,无气孔、裂纹等缺陷。利用EDS在界面附近做线扫面分析,镁元素和钛元素发生扩散,说明两种材料通过扩散反应实现了冶金结合。
采用本实施例2的方法,区别仅在于轧制前采用常规方法处理表面,不进行激光清洗制备表面微织构,其他步骤相同,获得钛/镁界面为平直结合,接头拉剪强度为175MPa,接头沿钛/镁界面开裂。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。