[1] | 李春海. 基于TiO2电子传输层的钙钛矿太阳能电池的研究[D]: [博士学位论文]. 北京: 北京交通大学, 2019. |
[2] | 邹宇, 孙伟海, 李昭, 等. NaTFSI界面修饰对平面TiO2基钙钛矿太阳能电池的影响[J]. 发光学报, 2021, 42(5): 682-690. |
[3] | 吴亭亭. 钙钛矿和氧化亚铜太阳能电池用TiO2电子传输层的构建与性能研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2019. |
[4] |
Roelofs, K.E., Pool, V.L., Bent, S.F., et al. (2016) Impact of Conformality and Crystallinity for Ultrathin 4 nm Compact TiO2 Layers in Perovskite Solar Cells. Advanced Materials Interfaces, 3, 7-8.
https://doi.org/10.1002/admi.201600580 |
[5] |
Kim, H.S., Lee, J.W., Park, N.G., et al. (2013) High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensi-tizer. Nano Letter, 13, 2412-2417.
https://doi.org/10.1021/nl400286w |
[6] |
Mail, S.S., Betty, C., Charles, S., et al. (2017) Synthesis of a Nanostructured Rutile TiO2 Electron Transporting Layer via an Etching Process for Efficient Perovskite Solar Cells: Impact of the Structural and Crystalline Properties of TiO2. Journal of Materials Chemistry A, 5, 12340-12353. https://doi.org/10.1039/C7TA02822A |
[7] |
Chen, D.H., Cheng, Y.B., Caruso, R.A., et al. (2015) Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole-Blocking and Efficient Light-Harvesting for High-Performance Mesoscopic Perovskite Solar Cells. Advanced Functional Materials, 25, 3264-3272. https://doi.org/10.1002/adfm.201500616 |
[8] |
Sun, J.S., Pascoe, A.R., Meyer, S., et al. (2019) Ultrasonic Spray Deposition of TiO2 Electron Transport Layers for Reproducible and High Efficiency Hybrid Perovskite Solar Cells. Solar Energy, 188, 697-705.
https://doi.org/10.1016/j.solener.2019.06.045 |
[9] |
Hayali, A. and Alkaisi, M.M. (2021) High Efficiency Per-ovskite Solar Cells Using DC Sputtered Compact TiO2 Electron Transport Layer. European Physical Jour-nal—Photovoltaics, 12, 8. https://doi.org/10.1051/epjpv/2021008 |
[10] |
Lu, H., Gu, B., Fang, S., et al. (2021) In Situ Growth of an Opal-Like TiO2 Electron Transport Layer by Atomic Layer Deposition for Perovskite Solar Cells. Sustainable Energy & Fuels, 5, 880-885. https://doi.org/10.1039/D0SE01558J |
[11] |
Zhang, X.Q., Wu, Y.P., Shen, S., et al. (2016) Reduction of Oxygen Vacancy and Enhanced Efficiency of Perovskite Solar Cell by Doping Fluorine into TiO2. Journal of Alloys and Compounds, 681, 191-196.
https://doi.org/10.1016/j.jallcom.2016.04.194 |
[12] |
Yan, Y, Liu, C., Yang, Y., et al. (2021) Fundamental Flaw in the Current Construction of the TiO2 Electron Transport Layer of Perovskite Solar Cells and Its Elimination. ACS Applied Materials & Interfaces, 13, 39371-39378.
https://doi.org/10.1021/acsami.1c09742 |
[13] |
Chen, B.X., Rao, H.S., Kuang, D.B., et al. (2016) Achieving High-Performance Planar Perovskite Solar Cell with Nb-Doped TiO2 Compact Layer by Enhanced Electron Injection and Efficient Charge Extraction. Journal of Materials Chemistry A, 4, 5647-5653. https://doi.org/10.1039/C6TA00989A |
[14] |
Cai, Q.B., Zhang, Y.Q., Shao, G.S., et al. (2018) Enhancing Effi-ciency of Planar Structure Perovskite Solar Cells Using Sn-Doped TiO2 as Electron Transport Layer at Low Tem-perature. Electrochimica Acta, 261, 227-235.
https://doi.org/10.1016/j.electacta.2017.12.108 |
[15] |
Ma, F., Ziffer, M.E., Ginger, D.S., et al. (2015) Zr In-corporation into TiO2 Electrodes Reduces Hhysteresis and iImproves Performance in Hybrid Perovskite Solar Cells While Increasing Carrier Lifetimes. The Journal of Physical Chemistry Letters, 6, 669-675. https://doi.org/10.1021/jz502694g |
[16] |
Heo, J.H., You, M.S., Im, S.H., et al. (2015) Hysteresis-Less Mesoscopic CH3NH3PbI3 Perovskite Hybrid Solar Cells by Introduction of Li-Treated TiO2 Electrode. Nano Energy, 15, 530-539. https://doi.org/10.1016/j.nanoen.2015.05.014 |
[17] | 李杭倩. 改进两步法制备基于TiO2的钙钛矿太阳能电池性能研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2016. |
[18] |
Tao, C., Neutzner, S., Annamaria, P., et al. (2015) 17.6% Stabilized Efficiency in Low-Temperature Processed Planar Perovskite Solar Cells. Energy & Environmental Science, 8, 2365-2370. https://doi.org/10.1039/C5EE01720C |
[19] |
Zhu, Z.L., Ma, J.N., Yang, S.H., et al. (2014) Efficiency Enhancement of Perovskite Solar Cells through Fast Electron: The Role of Grapheme Quantum Dots. Journal of the American Chemical Society, 136, 3760-3763.
https://doi.org/10.1021/ja4132246 |
[20] |
Li, H., Shi, W.N., Yang, Y., et al. (2017) Carbon Quantum Dots/TiOX Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%. Nano Letter, 17, 2328-2335.
https://doi.org/10.1021/acs.nanolett.6b05177 |
[21] |
Tan, H.R., Jain, A., Sargent, E.H., et al. (2017) Efficient and Stable Solution-Processed Planar Perovskite Solar Cells via Contact Passivation. Science, 355, 722-726. https://doi.org/10.1126/science.aai9081 |
[22] |
Mali, S.S., Shim, C.S., Hong, C.K., et al. (2015) Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells. Chemistry of Materials, 27, 1541-1551. https://doi.org/10.1021/cm504558g |
[23] |
Lee, Y.H., Paek, S., Nazeeruddin, M.K., et al. (2017) Enhanced Charge Collection with Passivation of the Tin Oxide Layer in Planar Perovskite Solar Cells. Journal of Materials Chemistry A, 5, 12729-12734.
https://doi.org/10.1039/C7TA04128D |
[24] |
Song, S., Kang, G., Chi, J., et al. (2017) Systematicall Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (n = 21.1%). ACS Energy Letters, 2, 2667-2673.
https://doi.org/10.1021/acsenergylett.7b00888 |
[25] |
Zhang, X.Z., Zhang, W.N., Wu, T.Y., et al. (2019) High Efficiency and Negligible Hysteresis Planar Perovskite Solar Cells Based on NiO Nanocrystals Modified TiO2 Electron Transport Layers. Solar Energy, 181, 293-300.
https://doi.org/10.1016/j.solener.2019.02.011 |
[26] |
Zhou, J., Lyu, M., Zhu, J., et al. (2022) SnO2 Quantum Dot-Modified Mesoporous TiO2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. ACS Ap-plied Energy Materials, 5, 3052-3063.
https://doi.org/10.1021/acsaem.1c03681 |
[27] |
Valerio, Z., Francesco, D.G., Herbert, L., et al. (2018) Surface Fluorination of ALD TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. Advanced Materials Interfaces, 5, Article ID: 1701456.
https://doi.org/10.1002/admi.201701456 |
[28] |
Wang, J.L., Zhou, X.J., Ni, J., et al. (2021) High-Performance Perovskite Solar Cell Based on Mesoporous TiO2 Electron Transport Layer Enabled by Composite Treatment Strategy. Journal of Materials Science: Materials in Electronics, 32, 28417-28425. https://doi.org/10.1007/s10854-021-07221-6 |
[29] |
Wang, B.J., Yang, J.M., Lu, L.Y., et al. (2020) Interface Engineering of Air-Stable n-Doping Fullerene Modified TiO2 Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 7, Article ID: 1901964. https://doi.org/10.1002/admi.201901964 |
[30] | 王传坤, 吴正雪, 唐颖, 等. 钙钛矿太阳能电池中TiO2材料制备及应用进展[J]. 化工新型材料, 2020, 48(1): 41-44. |
[31] |
Mallela, M.S., Tsai, J.H., Huang, J.Z., et al. (2022) Dielectric Barrier Discharge Jet Processed TiO2 Nanoparticle Layer for Flexible Perovskite Solar Cells. Journal of Physics, D Applied Physics: A Europhysics Journal, 55, Article ID: 034003. https://doi.org/10.1088/1361-6463/ac2bcd |