1.本发明属于低温工程装备技术领域,具体涉及采用低温透平压缩循环的氢液化系统。
背景技术:
2.近年来,随着我国清洁能源战略实施和结构调整,各种新能源的开发和利用吸引了众多的关注。其中,氢能作为高效清洁的能源,是当前能源问题重要的长期解决方案之一。如何安全有效地储存和运输是氢能大规模应用的关键技术挑战。高压常温储氢是目前应用最为广泛、技术最为成熟的储氢技术。但是随着深冷、绝热及真空技术的日益成熟,低温液氢的储运方式具有更高的存储密度和更低的运行压力,减少了单位质量输运的能耗和空间成本,有望成为氢气长距离运输和大规模存储的有效方式。
3.氢气的液化是液氢储运产业链中最关键的环节,具有技术工艺复杂、能耗占比高、投资成本高的特点。过去的几十年,许多研究这都在研究如何提高氢液化的效率。提高氢液化的效率可以有效地减小氢液化设备运营的成本,也能间接地降低设备投资成本。
4.现有技术中的氢液化系统一般包括主制冷系统、液化系统、低温换热器组,主制冷系统设置压缩机和膨胀机,并通过低温换热器组与液化系统中的氢气进行换热,对氢气制冷,使其最终形成液氢产品。其中,压缩机用于对制冷工质压缩行程高压,为主制冷系统的循环管路提供高压工质,膨胀机用于将高压工质膨胀制冷,为液化系统提供冷量。低温换热器组中,每个低温换热器配备一个正仲氢催化反应器(既可采用等温连续反应器,也可以采用绝热分步反应器),以将氢气催化为当前换热器温度下的平衡态氢气。由氢气气源提供的原料氢气依次通过多级换热器内的正仲氢反应器,最后以液态的形式进入液氢储罐并由产品出口流出。
5.但是目前运行的氢液化装置的效率仍然比较低,仅有20~30%。氢液化工艺的主要不可逆损失主要来自于压缩机、换热器和膨胀机。目前主流的氢液化工艺所采用的氦气螺杆式压缩机和氢气活塞式压缩机的等温效率都不是十分理想,仅有40~50%左右。
6.而采用氦气或者氦-氖混合气体作为主制冷循环工质的工艺在与换热器进行换热时,尤其是近氢气临界点附近的温区存在较大的换热温差;而采用氢气作为主制冷循环工质的工艺则由于工艺复杂,流道较多,且氢气密度小阻力大等原因,实际工程中在换热器部分所展现出效率也不尽理想。
7.目前氢液化工艺中低温透平膨胀机的等熵效率一般可以达到70%以上,但是由于氢气分子量小,对于大型的高速低温氢气低温透平膨胀机仍然具有诸多技术挑战,如大型透
声明:
“采用低温透平压缩循环的氢液化系统的制作方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)