本发明公开了网络设备领域的便携式自组网设备箱,包括箱体、锂电池组和市电输出插座,所述箱体一侧通过螺栓连接有所述锂电池组,所述锂电池组上侧中心转动连接有所述市电输出插座,所述锂电池组内部靠近所述箱体一侧设置有电芯,所述电芯上部靠近所述锂电池组一侧设置有逆变模块,所述逆变模块一侧设置有DC‑DC电源供应器,所述电芯远离所锂电池组一侧设置有电池状态监测模块,所述电池状态监测模块上侧的所述箱体侧壁上设置有连接座。本发明中,通过设置的锂电池组、电芯、逆变模块、DC‑DC电源供应器和市电输出插座,使得装置可以为前线作业设备提供能量支持供应,降低作业设备能量供应分布部署难度,保证抢修作业的顺利进行。
本发明涉及电池电解液领域,针对无法制备兼具高电压耐受条件下具有高库伦效率的锂基电池的技术空缺的问题,公开了一种含醚的电解液及其用途,所述电解液含有含硼锂盐、含醚键的非水有机溶剂和不溶解锂盐的惰性非水有机溶剂;其中含醚键的非水有机溶剂的体积分数为50~80 vol%,不溶解锂盐的惰性非水有机溶剂的体积分数为50~20 vol%;所述锂盐在有机溶剂中的摩尔浓度为2.5‑6 mol/L;所述含醚键的非水有机溶剂选自醚类、酯醚类、腈砜醚类中的任意一种或多种。该电解液可实现高电压锂金属电池(最高可至4.6V)的稳定循环以及超高的锂金属负极侧库伦效率(99.34%),有效提高了电池的循环性能和安全性。
本发明公开一种高浓度再稀释电解液及其制备方法。高浓度再稀释电解液是一种具有局域高浓度结构的新型电解液,溶液中锂离子仅与溶剂分子和锂盐阴离子配位而不与稀释剂配位,且不存在自由溶剂和自由阴离子。制备该电解液需按照溶剂供体数>阴离子供体数>稀释剂供体数的原则,选取溶质、溶剂和稀释剂,并通过绘制三元溶解度相图确定三者配比,从而可获得一系列比例可调的高浓度再稀释电解液。所述高浓度再稀释电解液展现出与高浓度电解液类似的电化学性质,可以改善传统低浓度电解液工作电压受限、副反应严重、难以形成稳定界面等不足;又能解决高浓度电解液高粘度、高成本等问题,适用于锂离子电池、锂金属电池、锂硫电池、锂空气电池等。
本实用新型公开了一种充电耳内式助听器,包括耳内式助听器及相应的充电盒,耳内式助听器包括电平转换单元、电源单元和助听器电路单元及外壳,电平转换单元、电源单元和助听器电路单元置于外壳内,外壳由面板和下壳组成,电源单元和电平转换单元及助听器电路单元电连接。电源单元包含助听器充电触点、锂离子充电电池及锂电池保护电路和锂电池DC/DC降压电路,锂离子充电电池和助听器充电触点、锂电池DC/DC降压电路分别电连接,助听器电路单元和锂电池DC/DC降压电路电连接。本实用新型助听器通过助听器上的充电触点和充电盒对应的充电触点接触给助听器内部锂离子电池充电并在充电时关闭助听器电路。
本实用新型公开了一种具有状态检测功能的混合电池,涉及电池检测的领域,包括锰酸锂电池、磷酸铁锂电池、第一检测装置、第一控制装置和第一执行装置,锰酸锂电池和磷酸铁锂电池串联,第一检测装置用于检测锰酸锂电池两端电压差并输出相应的第一电压信号,第一控制装置连接于第一检测装置以接收第一电压信号并将第一电压信号与预设信号进行比较以输出相应的第一控制信号,第一执行装置连接于第一控制装置以接收第一控制信号并响应第一控制信号以显示电池状态。采用电压差估读法对锰酸锂电池的容量进行检测即可等效于获知磷酸铁锂电池的容量,并通过第一执行装置来显示电池状态来反馈当前的容量状态,有助于工作人员直观地了解和判断电池状态。
本发明涉及锂离子电池负极材料技术领域,公开了一种高首效长循环SiO/C复合负极材料的制备方法及应用,包括如下步骤:将SiO、碳酸盐和金属锂在惰性气氛下通过球磨混合,将混合物于700~900℃下无氧烧结,并保温10~100小时;所得烧结固体产物冷却后酸洗,得到预锂化的SiO/C复合负极材料。本发明使用金属锂对SiO进行预锂化,并还原碳酸盐实现对预锂化后的SiO的碳包覆,通过改变SiO材料的硅氧从而提高首效,进而实现碳包覆的可控制备;所使用设备要求及能耗不高,易于操作且安全无污染,可实现工业大规模生产应用;以SiO/C复合负极材料制备得到的固体电池展现出高首效和长循环稳定性。
本实用新型公开了一种全固态电池,所述全固态电池包括一正极层、一负极层、一固体电解质层、一正极预锂化层以及一负极预锂化层,所述固体电解质层位于所述正极层和负极层之间,所述正极预锂化层夹设于所述正极层与所述固体电解质层之间,所述正极预锂化层的晶格参数介于所述正极层的晶格参数与所述固体电解质层的晶格参数之间,所述负极预锂化层夹设于所述负极层和所述固体电解质层之间,所述负极预锂化层的晶格参数介于所述负极层的晶格参数与所述固体电解质层的晶格参数之间。正极锂化层及负极锂化层的设置提高了正极层、负极层和固体电解质层之间的晶格匹配度,改善了界面接触,降低了界面阻抗,从而达到改善电池倍率性能和循环性能的目的。
本发明公开了一种聚[1,3,5‑三(4‑二苯基氨基苯基)苯]有机微介孔聚合物材料及其制备和应用。聚[1,3,5‑三(4‑二苯基氨基苯基)苯],具有如式(I)所示结构,所述聚[1,3,5‑三(4‑二苯基氨基苯基)苯]通过以下方法制备:以无水三氯化铁为氧化剂,以式(II)所示的1,3,5‑三(4‑二苯基氨基苯基)苯为单体通过化学氧化聚合反应制得如式(I)所示的聚[1,3,5‑三(4‑二苯基氨基苯基)苯]。本发明提供了所述聚合物材料作为锂离子电池正极材料的应用以及由所述的聚[1,3,5‑三(4‑二苯基氨基苯基)苯]有机微介孔聚合物材料作为正极材料制得的锂离子电池,该锂离子电池具有优异的倍率性能。
本发明涉及制备直径均匀氧化锌纳米棒的方法,包括以下步骤:1)把醋酸锌溶解于无水乙醇或无水甲醇中,0℃下充分搅拌,配制成浓度为0.5~30%的悬浊液,室温下将氢氧化锂溶解于无水乙醇或无水甲醇中,配制成摩尔浓度两倍于醋酸锌的氢氧化锂溶液;2)在0℃温度下,将等体积的氢氧化锂溶液,逐滴地加入到搅拌着的醋酸锌溶液中,得白色胶体状混合溶液;3)将胶体溶液放入水热反应釜中,将密封后的反应釜,在80~200℃下保温5~24小时,取出反应溶液;4)离心分离反应溶液,用无水乙醇对分离物充分洗涤,室温下干燥,即可。本发明方法简便,易于操作,成本低,通过调节反应物浓度,反应釜温度,可以控制直径均匀的氧化锌纳米棒。
本发明涉及制备单分散纳米氧化锌颗粒的方法,包括以下步骤:1)把醋酸锌溶解于无水乙醇或无水甲醇中,0℃下充分搅拌,配制成浓度为0.5~30%的悬浊液,室温下将氢氧化锂溶解于无水乙醇或无水甲醇中,配制成摩尔浓度两倍于醋酸锌的氢氧化锂溶液;2)在0℃温度下,将等体积的氢氧化锂溶液,逐滴地加入到搅拌着的醋酸锌溶液中,得白色胶体状混合溶液;3)将胶体溶液放入水热反应釜中,在80~200℃下保温1~3小时,取出反应溶液;4)离心分离反应溶液,用无水乙醇对分离物充分洗涤,室温下干燥,即可。本发明方法简便,易于操作,成本低,通过调节反应物浓度,反应釜温度,可以控制纳米氧化锌颗粒的大小。
一种用于燃气轮机进气加热与冷却的集成系统,该集成系统中包括一溴化锂制冷机,该溴化锂制冷机的驱动热源进口连接蒸汽轮机供热抽汽或低压主蒸汽的引出口,所述供热抽汽或低压主蒸汽经过溴化锂制冷机后被冷凝后形成的凝结水从溴化锂制冷机的凝结水引出口引出,通过一管道泵连接到轴封加热器后的凝结水管道;所述溴化锂制冷机的冷却水进口与电厂循环水管路中的循环水泵出口连接,溴化锂制冷机的冷却水出口与循环水管路中的回水管道连接;所述溴化锂制冷机的冷媒水出口通过一冷冻水泵与一空气冷却器中的冷媒水换热通道进口连接,冷媒水换热通道出口回接到所述溴化锂制冷机的冷媒水进口上;所述空气冷却器中还有空气换热通道并使空气换热通道中吸入的热空气与媒水换热通道的冷媒水进行热交换。
本发明公开了一种聚合物复合固体电解质及其制备方法,涉及固体电解质技术领域,其中,一种聚合物复合固体电解质,包括锂化聚乙烯醇缩甲醛聚合物、锂盐、聚偏氟乙烯、多孔有机共价材料和锆酸镧锂,所述锂化聚乙烯醇缩甲醛聚合物、锂盐、聚偏氟乙烯、多孔有机共价材料和锆酸镧锂的质量比为50‑70:5‑10:1‑5:3‑5:10‑30。相比于纯聚乙烯醇缩甲醛基固体电解质,本申请采用多组分基体的聚合物复合固体电解质,不仅可以显著提高固体电解质的室温电导率和机械弹性,且可以大幅改善全固体锂电池的倍率放电性能和循环寿命。
本实用新型属于无人机电源技术领域,公开了一种高电压高寿命无人机电源,包括主壳、盖体、锂电池和锂电池保护板,主壳的长边内部设有电池腔,主壳的短边内设有连载面,连载面上对称设有两个贯穿的短管窗,主壳的长边的内底面上设有若干贯穿的卡口,盖体与主壳卡扣连接,盖体外面上对称设有两个贯穿的长管窗,电池腔内设有锂电池,连载面上固定有锂电池保护板。本实用新型装卸方便,便于在长距离飞行作业时,多站点自动化更换,从而提高无人机作业距离;锂电池保护板对锂电池充放电进行管理,提高锂电池使用寿命,锂电池采用高电压锂电池电芯,提高有效放电时间,从而提高无人机续航时间。
本发明公开了一种微型分光元件及其制备方法。包括起偏器、铌酸锂晶体和检偏器;铌酸锂晶体对称的两侧面分别设置有起偏器和检偏器,铌酸锂晶体在靠近检偏器的一侧加工为纳米光栅,且纳米光栅和铌酸锂晶体光轴平行;光源发出垂直于铌酸锂晶体光轴的光线,光线依次透过起偏器、铌酸锂晶体、检偏器后被探测器接收。本发明采用超快激光自组织加工,在铌酸锂晶体中平行于光轴方向制备纳米光栅结构,并利用单轴晶体的色偏振效应,配合小周期纳米光栅的分光能力,对色偏振效应进行增强,最终实现50×50μm内的微区分光。
本发明公开了一种固态电解质及其制备方法和应用,该固态电解质包括聚合物相,和分散在聚合物相内的陶瓷电解质与锂盐;聚合物相为含氟聚合物‑聚丙烯酸酯类共聚物。制备方法包括:1)将含氟聚合物与有机溶剂混合,经100~150℃下反应后得到改性含氟聚合物;2)将步骤1)制备的改性含氟聚合物、陶瓷电解质、锂盐、丙烯酸酯类单体与引发剂混合,在惰性气氛下,经聚合反应得到固态电解质。本发明公开的固态电解质,具有高的机械强度并兼顾韧性,较高的锂离子电导率,以及分别与金属锂负极和氧化物正极间优异的界面相容性和高的化学/电化学稳定性,可应用于金属锂电池、锂空气电池及锂硫电池中。
本发明公开了一种基于瞬时高温焦耳热法的纳米复合材料合成装置及金属锂‑碳/纳米金属复合材料的制备方法和作为金属锂电池的负极材料的应用。装置利用脉冲电源,基于焦耳热原理,对反应前驱体进行瞬时加热、冷却,并得到纳米复合材料。装置可通过脉冲电流源,控制电流施加大小、脉宽来控制反应温度和时间。本发明制备方法通过金属盐浸泡,瞬时高温焦耳热法,反应后生成了碳/纳米金属复合材料,以此为载体,通过高温融锂法,在碳/纳米金属复合材料复合金属锂,制备金属锂电池金属锂‑碳/纳米金属复合电极材料。本发明金属锂‑碳/纳米金属复合电极材料具有柔性、高比容量,高倍率性能、高循环寿命及高安全性等优点。
本发明涉及一种基于语义查询重写的柔性数据服务组合的方法,包括以下步骤:1.数据源数据本体模型的建模与发布;2.数据源数据服务模型的建立与发布;3.用户输入查询请求并将查询请求发送给查询重写器;4.查询重写器调用基于图模型的DS的匹配算法,找出可用于完成查询要求的候选DS集;5.在候选DS集的基础上,调用DS组合执行器;6.DS组合执行器调用基于查询重写的DS组合算法,找出可完成查询要求的、可组合的DS序列;7.按照最后生成的DS序列,依次执行并组合数据服务,得到用户想要查询的数据集。本发明优点是:1.提高了用户查询请求的灵活性;2.数据源的描述更加精准,对外提供更加细粒度的查询接口;3.提高了服务组合的效率。
本发明提供一种非水电解液,包括锂盐、有机溶剂,所述锂盐为一种含有六氟磷酸锂的混合物晶体,所述混合物晶体的长径比为1‑1.5,晶体的平均粒径为0.15‑0.4mm,90%以上的所述晶体中,晶面族{110}占20‑80%、晶面族{111}占20‑80%,所述混合物晶体还包含不溶物、游离酸,混合物晶体中六氟磷酸锂的质量百分含量为99.90‑99.995%。所述有机溶剂为环状碳酸酯和/或链状碳酸酯的非水溶剂。非水电解液还包括添加剂,添加剂包括二氟磷酸锂、双三氟甲基磺酰亚胺锂及氟代碳酸酯中的至少二种。本发明的非水电解液具有优良的高温循环性能、高温存储性能、低温放电性能、大倍率充电性能。本发明还包括包含上述非水电解液的二次锂电池。
本发明属于固态锂电池技术领域,涉及一种含乳清酸的固态聚合物电解质膜及其制备方法和在锂金属电池中的应用。所述固态聚合物电解质膜包括聚合物基体、导电锂盐和乳清酸。本发明通过在固态聚合物电解质中引入乳清酸,使得聚合物电解质膜与金属锂的界面相容性增加,提高锂负极的稳定性。在循环过程中乳清酸分解产生的LiN3,存在于锂金属和电解质膜界面处,抑制锂枝晶的生长,提升界面的稳定性和离子传导性,可以显著改善Li/PEO界面。同时添加乳清酸的聚合物电解质组装的电池比容量也得到了提高。乳清酸来源丰富,价格低廉,具有较高经济效益,且本发明的含乳清酸的聚合物固态电解质制备工艺成熟,成本低廉,采用浇筑法成膜,制备简单,适合大规模生产。
本实用新型公开了一种强动力电动自行车,包括横杆、前侧立杆、后侧立杆、底架和车胎,前侧立杆连接横杆和前侧的车胎,后侧立杆连接横杆和底架,后侧立杆顶端连接有车座,底架上连接踏板,底架内连接有电机,底架末端连接后侧的车胎,横杆内设置有空腔,空腔内插入有锂电池,后侧立杆上设置有隐藏式电池安置结构,隐藏式电池安置结构内安置有轮换锂电池,轮换锂电池和锂电池通过轮换电路连通电机。本实用新型具有锂电池和轮换锂电池双锂电池的隐藏密封安置结构,锂电池和轮换锂电池通过轮换电路轮换着给电机提供电力,保持电机强动力,续航能力强,同时完美隐藏电池,车体精制;并给予电池以独立的密闭空间,保护电池,防止电池被侵蚀和盗取。
本发明涉及光伏发电领域,尤其涉及光伏储能逆变器的控制系统,包括:依次连接在光伏组件输出端的升压电路、电容C1、第一电压双向调节电路、电容C2、充放电控制电路,所述充放电控制电路连接锂电池,所述电容C1的输出端还连接有检测控制电路和逆变电路;所述检测控制电路分别连接第一电压双向调节电路、锂电池、充放电控制电路,用于检测锂电池端的电压,根据检测结果控制第一电压双向调节电路、充放电控制电路,给锂电池充电或者放电;所述逆变电路的输出端连接电网。通过使用本发明,可以实现以下效果:在锂电池电压可能会低于正常工作电压时,对锂电池进行强制充电,避免了锂电池的深度放亏导致锂电池损坏,而造成重大经济损失。
本发明公开了一种碳纤维负载氧化镁颗粒交联纳米片阵列复合材料及其制备方法和作为锂金属电池负极骨架材料在制备锂金属电池负极中的应用。通过电沉积的方式在碳纤维上负载了氢氧化镁纳米片,在此基础上热处理后得到亲锂的氧化镁颗粒交联纳米片阵列。将其作为锂金属电池负极骨架材料与金属锂片组装成电池进行电化学沉积锂金属得到锂金属电池负极。本发明电沉积后得到的锂金属电池负极依然表现出较低的极化电压,较高的沉积‑溶解效率和较长的寿命,电学性能优异,具有广阔的应用前景。
本发明提供了一种直放站监控电路后备电池管理控制方法,监控电路的供电电源由两部分组成,其一是外部直流电源,其二是锂电池供电;外部电源供电的电压为锂电池充满电时的电压,正常情况下,外部直流电源供电,不启用锂电池,锂电池作后备使用;设备在不启动外部直流电源的情况下不激发锂电池供电,保证锂电池插上如果不激发锂电池则长期处于静止状态;当外部直流电源失电后,锂电池能够无缝接入到电路中,使掉电后设备能够正常地工作,而不受电源变动的影响。本发明有益的效果是:能够有效的解决直放站监控电路在正常供电和停电后对设备的监控,有效管理在两种情况下电路对电源的需求,解决停电后或者是电池耗尽后造成的实时时钟丢失的问题。
本发明公开了一种高首效SiO/C复合材料的制备方法,属于锂电池材料技术领域,具体步骤如下:SiO材料与金属锂在氩气氛围下球磨,SiO会和金属锂反应生成Li2O和LixSiy晶体,化学反应随球磨时间延长而正向进行,得到预锂化的SiO材料,进而通入CO2气体,再次球磨,金属锂和CO2气体在球磨过程中发生反应,生成碳和Li2CO3等能在实现碳包覆的同时表面氧化改性。本发明所使用的设备要求不高且能耗低,球磨方法易于操作,可实现大规模应用。本发明可做到对SiO预锂化进而碳包覆量,同时将材料表面改性,实现材料预锂化和碳包覆的可控制备。本发明制备得到材料作为锂离子电池负极,展现出较高的容量的库伦效率,且循环稳定性突出。
本实用新型公开了一种声学定位器用电池组,包括若干锂电池,锂电池组分为数量相同的两个支路,每个支路中锂电池相互串联,两个支路并联,锂电池单体分别并联一个反向二极管,锂电池两个支路分别串联一个二极管,锂电池组设置在一个封闭圆筒内,锂电池组输出端设有自恢复保险丝,封闭圆筒两端设有泡沫材料圆盖,封闭圆筒外侧包覆热缩膜,锂电池数为20个,锂电池每四个相互叠加形成五组电池条,电池条在封闭圆筒内呈圆形排列,五组电池条中心设有导线穿孔,自恢复保险丝容量为4A,锂电池组采用整体灌封。本实用新型可降低生产使用成本,电池组保护措施更好更有效。
本发明涉及电池领域,特别涉及一种复合材料制备方法、电池正极、电池及其制备方法。所述复合材料制备方法、电池正极、电池及其制备方法,包括以下步骤:将富锂材料与镍钴锰酸锂材料混合得到混合物,其中,所述富锂材料质量占比50%‑80%,所述镍钴锰酸锂材料质量占比20%‑50%;向所述混合物中加入硝酸,加热并保温;加入柠檬酸,静置;干燥;分段烧结,得到所述富锂‑镍钴锰酸锂复合材料。本发明采用富锂材料与镍钴锰酸锂材料复合的技术,使用两种材料复合后,结合了两种材料的优点,制造的动力电池比能量高,循环寿命好;本发明所采用的复合材料制备方法制备环境无须十分苛刻,生产制造更简单。
本发明涉及锂电池正极材料领域,针对现有锂电池中正极材料循环性能差的问题,公开了一种离子通道稳定性高的掺杂改性正极材料,所述掺杂改性正极材料为:负载镍钴锰酸锂中混掺磷酸锰铁锂材料,负载镍钴锰酸锂与磷酸锰铁锂材料质量比为1:0.25‑0.4。所述负载镍钴锰酸锂的制备过程为:(1)制成三维排列框架;(2)制成第一载体结构;(3)选择性溶解;(4)接枝活性基团;(5)负载。本发明能够制备出具有良好导热性、导电性、高稳定性孔道及整体性性能好的正极材料,使得制备出来的锂电池正极材料具有较强的循环性能与较长的使用寿命,可以有效实现锂离子电池的材料优选和工艺优化。
一种用于燃气轮机进气加热与冷却的集成系统,该集成系统中包括一溴化锂制冷机,该溴化锂制冷机的驱动热源进口连接蒸汽轮机供热抽汽或低压主蒸汽的引出口,所述供热抽汽或低压主蒸汽经过溴化锂制冷机后被冷凝后形成的凝结水从溴化锂制冷机的凝结水引出口引出,通过一管道泵连接到轴封加热器后的凝结水管道;所述溴化锂制冷机的冷却水进口与电厂循环水管路中的循环水泵出口连接,溴化锂制冷机的冷却水出口与循环水管路中的回水管道连接;所述溴化锂制冷机的冷媒水出口通过一冷冻水泵与一空气冷却器中的冷媒水换热通道进口连接,冷媒水换热通道出口回接到所述溴化锂制冷机的冷媒水进口上;所述空气冷却器中还有空气换热通道并使空气换热通道中吸入的热空气与媒水换热通道的冷媒水进行热交换。
中冶有色为您提供最新的浙江杭州有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!