一种锂离子电池电解液制作中加锂盐的控制装置,用于在配制锂离子电池电解液时控制锂盐加入速度。采用的技术方案为:一种锂离子电池电解液制作中加锂盐的控制装置,包括锂盐桶、加料管道,其特征是,锂盐桶通过加料管道与反应釜连接,加料管道靠近锂盐桶与反应釜分别设置连接法兰,所述加料管道中部设置成N型,N型的拐角为直角,直对锂盐桶的加料管道直角设置斜坡,所述加料管道上部且位于锂盐桶连接法兰得下方设置进气管道一,N型加料管道的水平方向的斜坡下方接入进气管道二。本实用新型的优点在于可以通过调节干燥气体的气压来控制锂盐的流速,实现锂盐的均匀连续加入,同时解决了锂盐在加料中的结块问题。
本发明公开了一种六氟磷酸锂原料的高纯氟化锂制备方法,其特征在于:所述六氟磷酸锂原料的高纯氟化锂制备方法的具体步骤如下:步骤一:生成浓度为5-30%的高纯氟化铵溶液;步骤二:生成氟化锂沉淀浆料;内含硝酸铵溶液;步骤三:生成氟化锂和水的比例为1∶1-10;步骤四:将浆料放入流动氮气保护电阻炉,在200-400℃进行加热5-48h,浆料内的硝酸铵全部分解,留下高纯LiF粉体。该方法简洁、方便、制造高纯度氟化锂材料。
本发明公开了一种基于胶体骨架制备磷酸铁锂正极材料的新型方法,解决了固相原材料粒径尺寸局限于所使用介质的硬度和最小粒度、均匀性混合困难的问题。具体制备工艺如下:(1)胶体骨架共生;(2)超声空化和微波活化;(3)碳源胶体引入;(4)高温合成。本发明利用胶体骨架梯度混合的方式对可溶性和不可溶性铁锂原材料进行混合预处理,同时超声空化等操作的效用,为预烧结提供了足够的比表面和空间,为一次反应的气体顺利排出提供了可能,获得了高比容量的磷酸铁锂正极材料。
本发明公开了一种微晶LiVOPO4‑LiMPO4‑TiO2复合锂电材料及制备方法,属于锂电材料制备技术领域。本发明以质量份数71~93%的LiVOPO4微晶玻璃、5%~20%LiMPO4和2%~9%的纳米TiO2为原料,通过高温固相合成法制备LiVOPO4微晶玻璃‑LiMPO4‑纳米TiO2复合锂电材料。本发明通过材料纳米‑复合作用,一方面可以有效降低电荷转移阻抗,另一方面可以减少电解质溶液与电极材料的直接接触,避免电解质溶液与电极材料之间副反应的产生,从而显著提高材料的倍率性能和循环性能。本发明产品可以用在作为便携式电子设备、电动汽车中使用的锂离子二次电池正极材料。
本发明涉及一种锂电池钛酸锂浆料及其制备方法,属于锂电池技术领域。制备方法包括如下步骤:⑴将钛酸锂和粘结剂搅拌,获得混合粉体;⑵将步骤⑴的产物分批次加入溶剂中并搅拌,获得混合物;⑶将导电剂加入步骤⑵产物中并搅拌,获得混合物;⑷将步骤⑶产物采用砂磨工艺进行砂磨,并进行搅拌和真空消泡,获得锂电池钛酸锂浆料。相对于现有技术,本发明锂电池钛酸锂浆料的制备方法可以克服钛酸锂在配料过程中分散困难问题,有效缩短了钛酸锂浆料制备时间,提高了生产效率。
本发明公开了一种基于铝浓度呈正态分布制备球型锂电池正极材料镍钴铝酸锂的方法。该方法制备出的镍钴酸铝锂材料的形貌接近球体结构,铝元素的浓度沿着球心到球壳的浓度呈现正态分布。本发明的方法中,利用铝离子与氢氧根结合制备胶体,胶粒在强碱作用下溶解,形成四羟基合铝酸根离子液。依靠四羟基合铝酸根水解产生氢氧化铝完成方式沉降,水解的速度较慢可以与镍钴氢氧化物实现共沉淀,通过PH控制氢氧化铝的水解速度,形成了一种铝浓度为正态分布的镍钴酸铝锂球型材料。依靠有机介质3-甲基-1-丁醇的分散作用,在加热的条件下实现锂源与前驱体颗粒在分子程度上混料,较大提高了正极材料的克容量和循环性能。
本实用新型涉及一种锂电池保护板排线测试仪器用锂电池,属于锂电池领域。本实用新型采用的技术方案为:锂电池保护板排线测试仪器用锂电池,包括设有上盖和下盖的壳体,壳体内部为两圆柱状的电池腔体,两圆柱锂电池分别置于上述电池腔体内,两圆柱锂电池的一端设双极导电体与两圆柱锂电池的电极同时接触,另一端设两单极导电体与两圆柱锂电池的电极分别接触;上盖的内侧面设单极导电体安装槽和导电头输出孔,导电头输出孔位于单极导电体安装槽内并贯穿上盖,下盖的内侧面设双极导电体安装槽;双极导电体为两双极导电片通过导电弹簧连接而成,单极导电体为两单极导电片通过导电弹簧连接而成,单极导电片的侧面分别设有导电头。
一种锂-二硫化亚铁一次性锂电池电解质及其制备方法,采用有机溶剂碳酸丙烯酯(PC)、碳酸二甲酯(DME)、二茂戊烷(DOL)按照常规配比0.5~5∶0.5~3∶0.5~2的重量比例配制成混合溶剂,然后进行蒸馏除去杂质和水分。再把80℃~120℃高温处理过的电解质高氯酸锂(LiClO4)或六氟磷酸锂(LiPF6)和氯化锂(LiCl)分别按照:高氯酸锂(LiClO4)或六氟磷酸锂(LiPF6)摩尔浓度0.1~2M,氯化锂(LiCl)重量百分比0.1~10%的比例,在密闭的干燥环境下添加到混合溶剂中充分溶解,制成电解液,然后注入到已装配好Li-FeS2一次圆柱锂电池内部即可。本发明放电性能优良、成本低,重负载性能优越,容量是1.5V Zn-MnO2碱性电池的4-10倍,生产所用的材料都比较便宜,制作工艺也比较简单。
本发明提供一种高效提取锂制备碳酸锂的方法,具体是将盐酸通过梯度升温处理连续通入到由锂矿石填充的三级串联酸浸反应塔中,从三级酸浸反应塔出来的盐酸浸出液进入一级酸浸反应塔,循环洗涤至盐酸浸出液中盐酸质量分数低于2%,收集的盐酸浸出液用氨水调节pH值至6~7,过滤后得粗锂富集液;粗锂富集液经高温煅烧、碳酸钠除钙、沉锂、洗涤得高纯碳酸锂。该发明利用梯度升温、多级循环酸浸提锂的方法,提高了盐酸的利用率,避免传统工艺中的蒸馏除酸,缩短了反应时间、降低了能耗、安全环保,同时锂的回收率高,利于实现规模化工业生产。
一种磷酸铁锂包覆锰酸锂复合电极材料及其制备方法,复合电极材料包括:磷酸铁锂和锰酸锂,其特征是:磷酸铁锂均匀包覆在尖晶石型锰酸锂表面;磷酸铁锂的质量占磷酸铁锂和锰酸锂总和质量的百分比为5%~25%。磷酸铁锂为纳米级,所述的锰酸锂为尖晶石型锰酸锂。本发明的制备方法是以商业化的纳米级磷酸铁锂及锰酸锂为原材料,先将磷酸铁锂加入到葡萄糖溶液中,机械搅拌一段时间后再加入锰酸锂搅拌一段时间,经过滤、洗涤、热处理后得到磷酸铁锂包覆锰酸锂复合电极材料。本发明制备工艺简单,操作方便,包覆效果好,易于实现规模化工业生产,所获得的复合电极材料具有良好的电化学温度性及抗过充电性能。
本发明公开了一种锂电池用复合石墨和抗弯折负极片及其制备方法,包括以下步骤:S1:高分子导电粘结液的制备;S2:改性石墨的制备;S3:高分子导电粘结液对改性石墨的插层包覆;S4:负极涂布后的高温加热辊压处理;基于BIM技术虚拟施工,使得施工过程可视化,提高了现场施工的安全性。本发明制备成本低且生产效率高,提高电池成品率,生产工艺稳定可靠,可商业化大规模生产,大幅度促进材料容量的有效发挥,简化工艺、提高效率,提高材料的循环稳定性,为长寿命锂离子电池的推广创造了条件,制备的高弹粘性复合石墨和抗弯折负极片在长寿命、高能量密度锂离子电池领域具有广阔的应用价值。
一种锂离子电池正极材料磷酸铁锰镁锂及其制备方法,磷酸铁锰镁锂的化学通式为LiFe0.5Mn0.45Mg0.05PO4,按摩尔比1.0-1.2∶0.5∶0.45∶0.05∶1称取锂源、铁源、锰源、镁源、磷源于球磨罐中,并加入碳源,以蒸馏水作为分散剂,置于球磨机中球磨,制得磷酸铁锰镁锂前驱体;将前驱体放入微波炉中,经2~20min的微波处理干燥后,留待煅烧;将微波处理后的前驱体粉料,在惰性气体氛围保护下,控制升温速率为5~12℃/min,于500~850℃下煅烧处理3~15h,最后随炉冷却至室温,即得掺杂的碳包覆磷酸铁锰镁锂正极材料。
本发明属于锂金属电池技术领域,具体涉及一种不可燃锂金属电池电解液及其制备方法、锂金属电池及其制备方法。本发明采用乙基磷酸二乙酯和氢氟醚类溶剂作为锂金属电池电解液的有机溶剂,一方面能够提高电池负极材料的稳定性,有效调控负极材料表面锂沉积的均匀性,抑制锂枝晶的生成,提高锂金属电池的循环寿命;另一方面,使得电解液具有不可燃的特性,提高电池的安全性能。
本发明公开了一种锂离子电池电极、锂离子电池及锂离子电池制备方法,锂离子电池电极包括正极和负极,所述负极包括负极极片和负极极耳,负极极耳设在负极极片的中间位置,负极极片包括集流体和涂覆与其上的负极物质;所述正极包括正极极片和正极极耳,正极极耳设在正极极片的中间位置,正极极片包括集流体和涂覆其上的正极物质,正极极片的正反面上在负极极耳对应的位置设有隔离层,阻断了正极物质中锂离子的脱嵌。本发明的负极极耳设置在中间位置并且在正极极片的相应位置设有隔离层,保证了负极极耳对应位置处没有正极物质,确保锂电池安全的同时降低了内阻,更容易实现高倍率放电。
中冶有色为您提供最新的山东枣庄有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!