本发明公开了一种衣康酸超支化聚酯。该衣康酸超支化聚酯由衣康酸和三元羟基化合物反应制备得到。本发明还公开了衣康酸超支化聚酯的组合物,该组合物可用于制备环氧树脂固化物和碳纤维复合材料。制备得到的衣康酸超支化聚酯可显著提高环氧树脂固化物及碳纤维复合材料的力学性能、界面性能和热性能。制备的环氧树脂固化物可在温和条件下实现重塑加工和化学循环回收衣康酸超支化聚酯,制备的碳纤维复合材料可化学循环回收衣康酸超支化聚酯和碳纤维布。本发明工艺简单,可应用于航空航天、电子封装、发电叶片、印刷电路板等领域。
本发明涉及一种航空航天用微结构调控增韧涂层及其制备方法与应用,涂层包括制备在C/SiC复合材料基体表面缓冲层、制备在缓冲层表面SiCnw增韧自愈合中间层及最后制备在中间层表面SiC晶须增韧隔热层。本发明提供的SiC缓冲层促进涂层与基体缓冲强结合,SiCnw增韧自愈合中间层纵向高韧性同时强化各层涂层间的结合,SiC晶须增韧隔热层不仅二维平面横向随机增韧,而且具有热防护作用耐温可达1600℃。本发明具有优异的抗氧化、抗热震双重特性,最终实现横向、纵向微结构协同增韧作用,提高C/SiC复合材料在1600℃服役环境下的使用寿命,有效促进C/SiC复合材料在热冲击环境下性能的稳定。
本发明涉及一种高掺杂辐射制冷复合纤维及其织物的制备方法,包括制备辐射制冷复合材料,所述辐射制冷复合材料包括聚合物基底材料和无机微纳颗粒;制备包含所述辐射制冷复合材料的纤维预制棒;将该纤维预制棒进行热拉制,制得辐射制冷复合纤维。本发明利用热拉制的方法制备可高浓度掺杂微纳颗粒的辐射制冷复合纤维及织物,通过调控纤维预制棒的宏观结构和形状,可制备出具有多种复杂结构的复合纤维,并实现径向和角向任意浓度分布;该纤维不仅具有优异的辐射制冷性能和力学性能,且制备方法简单,可连续大规模制备,适合工业方法应用,同时可根据自己需求设计不同材料。
本发明提供了一种喷管扩张段及其成型方法,属于复合材料成型技术领域,所述方法包括,获得包括碳布和纤维布缝合在一起的双层材料预制体;将所述双层材料预制体置于模具中并注胶后,在50‑170℃的温度下进行固化处理6‑10h;将所述固化处理后的预制体脱模,获得喷管扩张段。本发明提供的成型方法不需要将高压作用在外侧的胶套上,克服了内层复合材料在成型过程中易出现的分层、开裂、微裂纹等现象,极大改善了双层复合材料制品的内部质量;该方法简单,对设备要求不高,成本低,简单易推广。
本发明属于化学储热材料相关技术领域,并公开了一种三维纳米碳氢氧化锂复合储热材料的制备方法及产品。该制备方法包括下列步骤:S1制备碳纳米管或碳纳米球,将单水氢氧化锂和制备获得的碳纳米管或碳纳米球混合,搅拌后陈化,然后升温保温,使得单水氢氧化锂均匀负载在碳纳米管或碳纳米球上,以此获得混合溶液;将该混合溶液冷却至室温,然后冷冻干燥以此去除混合溶液中的水,以此获得复合材料;S2将复合材料在在保护气氛下,升温处理,使其进行水解反应,冷却;S3将步骤S2中冷却后的溶液在保护气氛下进行水合反应,以此获得所需的储热材料。通过本发明,解决氢氧化锂复合材料储热密度低的问题。
本发明属于复合功能材料与电极材料技术领域,具体涉及一种碳化蛋壳膜、MXene和聚吡咯的复合凝胶及其制备方法和应用。该方法包括以下步骤:1)获取蛋壳膜;2)制备聚多巴胺包覆的蛋壳膜;3)制备表面负载MXene的蛋壳膜;4)再在惰性气体保护下高温煅烧,得到碳化蛋壳膜与MXene的复合材料;5)获取用于制备聚吡咯凝胶的第一组分和第二组分;6)将第一组分和所述第二组分滴涂在碳化蛋壳膜与MXene的复合材料上,静置反应1‑2h后,再将复合材料置于去离子水中浸泡溶解杂质,再与水分离,得到碳化蛋壳膜、MXene与聚吡咯的复合凝胶材料。该制备工艺简单,原料易得,聚吡咯凝胶的制备时间短。
本发明申请公开一种复合型高效节能的焚烧炉结构,涉及焚烧炉技术领域。该复合型高效节能的焚烧炉结构包括焚烧炉本体、微波发生器、波导管、保温层、石英、三氧化二铁陶瓷复合材料、物料投入口、高温废气排放口、空气入口和废气二次入口。所述焚烧炉本体外侧沿圆周方向均匀布置若干个微波发生器。焚烧炉本体内侧敷设保温层,保温层内侧由高温耐火的石英材料构筑成燃烧室。石英内侧布置若干三氧化二铁陶瓷复合材料。本发明通过重复利用焚烧废气,采用复合结构,并合理地布置微波发生器、三氧化二铁陶瓷复合材料,减少焚烧炉内的热量损失,提高焚烧效率,达到节能减排的目的。
本发明公开了一种量子点聚合物显示材料的制备方法,属于发光材料领域。所述方法包括:合成量子点;对分散剂进行预处理,得到悬浮状的胶体分散剂;将所述量子点加入经过预处理的所述分散剂中并混合均匀,得到混合产物,所述量子点与经过预处理的所述分散剂的摩尔/质量比为0.001:1~0.02:1;通过液氮将所述混合产物冷冻干燥,得到量子点/分散剂复合材料;将所述量子点/分散剂复合材料粉碎后与高分子材料混合并热塑成型,所述量子点/分散剂复合材料与所述高分子材料的添加质量比例为0.001:1~0.1:1,得到量子点聚合物显示材料。分散剂能够对量子点产生热保护,使掺入的量子点不被氧化并保护量子点不受温度的影响。
本发明涉及一种具有可见光活性的Ag-AgBr/凹凸棒石复合材料的制备方法。Ag-AgBr/凹凸棒石复合光催化材料的制备方法,其特征在于它包括以下步骤:1)将凹凸棒石粘土分散于去离子水中,配制成质量浓度为1wt.%的凹凸棒石悬浮液;2)按照Ag离子/凹凸棒石粘土的比例为1-3mmol/g,在搅拌的条件下,将硝酸银加入,搅拌,得到悬浮溶液;3)按照硝酸银与溴化钠的物质量比分别为(1.5-1)∶(1-1.5),向上述悬浮溶液中加入溴化钠溶液,搅拌6h烘干,得到AgBr/凹凸棒石复合材料;4)用可见光(λ>400nm)照射AgBr/凹凸棒石复合材料,得到Ag-AgBr/凹凸棒石复合光催化材料。此方法制备的复合光催化材料具有较好的可见光光催化性能,制备方法简单。
本发明提供了一种基于导电聚合物的超级电容器正极材料及其制备方法,先以硝酸锂、硝酸锶和泡沫镍为原料制成金属氧化物复合材料,再将金属氧化物复合材料与α‑萘胺单体、3‑(4‑氟苯基)噻吩单体混合聚合反应,即得一种基于导电聚合物的超级电容器正极材料,其中,金属氧化物复合材料在参与聚合反应之前利用草酸二异丁酯进行改性处理。该正极材料具有较高的比电容,循环性能佳。
本发明公开了一种Cu@Ni‑Sn‑P@W复合粉体,采用化学镀工艺,首先在W粉表面同时镀覆Ni‑Sn‑P镀层,实现活化烧结元素Ni、Sn和P的定区域添加,再定量包覆Cu,获得Cu@Ni‑Sn‑P@W复合粉体,最后将其作为原料在低温烧结条件下获得结构均匀且致密的W‑Ni‑Sn‑P‑Cu复合材料,并可进一步提升W‑Ni‑Sn‑P‑Cu复合材料的性能。本发明所得W‑Ni‑Sn‑P‑Cu复合材料结构均匀且致密,致密度高达98%以上,维氏硬度可达269.1HV,抗弯强度可达1154.8MPa;且涉及的制备工艺较简单、操作方便,能耗较低,适合推广应用。
本发明公开了一种利用水热法制备超级电容器电极片的方法。在该方法中,在高锰酸钾溶液中放入四氧化三钴的粉末颗粒,通过反应釜来控制时间和温度,在高温高压环境中,高锰酸钾热解出来的二氧化锰纳米片自组装在四氧化三钴的外壳上,形成一种核壳结构的中间体复合材料。用去离子水清洗水热反应后的粉末,放入恒温干燥箱内干燥,即可得到中间体复合材料。该中间体复合材料通过涂抹法可以制备成超级电容器电极片,通过电化学表征,在三电极体系下具有1.4V的超高放电电压,具有优异的超级电容器的性能。另外,该方法制备的核壳结构具有操作简单,易于控制,成本低,无毒等优点。
本发明提供了一种制备疏水铝硅气凝胶隔热材料的二次干燥法,步骤包括:步骤包括:S1、采用酸催化法水解配制铝溶胶,浸渍纤维增强材料凝胶后得到纤维增强铝凝胶体;S2、将凝胶体密封陈化,乙醇超临界干燥后进行热处理;S3、浸没于碱溶液中进行表面碱处理,离心后干燥;S4、采用酸催化法水解配制硅溶胶,将硅溶胶均匀浸渍纤维/铝气凝胶复合材料凝胶后得到孔隙中具有硅凝胶体的复合材料;S5、将复合材料浸没于醇溶剂中密封老化和溶质置换,然后浸没于表面改性剂溶液中进行表面处理,再进行二次乙醇超临界干燥,得到具有疏水性能的铝硅气凝胶隔热材料。本发明能够使材料的力学性能得到显著提高,具有疏水性,且保持良好的高温隔热性能。
本发明公开了一种锂离子电池用复合负极材料及其制备方法,其中,该复合材料包括炭包覆层和被该炭包覆层包裹的内核,其中,所述内核为包括Fe3O4、FeO和Fe三种成分的Fe3O4/FeO/Fe复合内核。本发明通过对该复合材料关键的制备工艺进行改进,直接用微纳尺寸α?Fe2O3颗粒作前驱体,用有机化合物或高分子化合物做分散剂、还原剂和炭源,采用热处理方法制备,有效简化了制备工艺,非常适用于大规模的批量生产;并且,该复合材料作为负极电极使用时,可以有效缓冲充/放电过程的体积变化对结构的破坏,提高电极材料导电性,提高该材料充/放电过程的比容量、循环稳定性以及倍率性能。
本发明提供一种用于锅具的抗菌不粘涂料及其制造方法和锅具。根据本发明的抗菌不粘涂料包括基础涂料以及分散在基础涂料中的抗菌复合材料,抗菌复合材料包括多孔材料以及设置在多孔材料的孔内的纳米抗菌材料,纳米抗菌材料与多孔材料的重量比在1:1至4:1之间,纳米抗菌材料包括重量比在1:9至9:1之间的纳米稀土元素氧化物和抗菌用纳米金属。在本发明中,通过在涂料中包括同时包含纳米稀土氧化物和抗菌用纳米金属并且使纳米稀土氧化物和抗菌用纳米金属吸附在多孔材料中的抗菌复合材料,能够通过太赫兹波复合金属离子两种抗菌方式,实现非接触式与接触式抗菌相互补充的目的,解决现有抗菌材料适应场景少,抗菌寿命短的问题。
本发明涉及激光材料改性的技术领域,具体涉及一种快速选择区域激光强化的方法,包括以下步骤:(1)对透明聚合物的表面进行微米和纳米结构的制造;(2)在聚合物表面的微米和纳米结构涂覆黑色的吸收层;(3)刮除聚合物表面多余的吸收层,使吸收层物质仅位于微米和纳米结构的凹槽内;(4)将步骤(3)得到的聚合物扣置在金属或金属复合材料的表面进行激光冲击强化。通过本发明的快速选择区域激光强化的方法强化工件,可以对金属或金属复合材料表面进行选区强化,通过三维梯度微结构效应同时提高金属或金属复合材料的强度和延展性,并能增强材料疲劳性能和断裂韧性。
本发明属于梯度材料技术领域,具体提供了一种ZrB2‑Mo梯度材料及制备方法,其中ZrB2‑Mo梯度材料包括两端的富ZrB2陶瓷和富Mo金属层,中间为具有梯度渐变组分的ZrB2/Mo多层复合材料层,且采取一体成型的方法烧结制备;各所述ZrB2/Mo多层复合材料层中的梯度渐变组分采用函数进行组分的分布设计。该方案制备的ZrB2‑Mo梯度材料与均质ZrB2/Mo复合材料相比,在相同的烧蚀环境下,能够更好地保持完整性,避免灾难性损伤,有效地缓解了陶瓷材料和金属材料之间因热膨胀系数差异引起的热应力,抗热冲击烧蚀性能大大提高。
本发明公开了一种在金属中定向掺杂石墨的方法,包括以下步骤:将金属原料粉体和/或镀有金属膜的石墨粉体混合并堆积成烧结层,使得所述镀有金属膜的石墨粉体以预设比例处于该烧结层预设的位置;在惰性气体保护下采用定向场将所述烧结层加热至烧结;重复堆积烧结层并逐层烧结直至材料制备完成。本发明将增量叠加的金属粉末以及镀有金属膜的石墨粉末,采用定向场使得金属粉末和石墨粉末的金属膜快速熔融烧结为复合材料,不仅具有高导热的性能,提高了复合材料强度,同时满足了在不同情况下对石墨‑金属复合材料复杂形状的需求。
本发明公开了一种锂离子电池改性石墨负极材料及其制备方法,该方法包括以下步骤:S1、将天然球形石墨浸没于2‑甲基咪唑的甲醇溶液,再加入锌盐的甲醇溶液,混匀后密封,静置老化,离心洗涤干燥,得到ZIF8/天然球形石墨复合材料;S2、将该复合材料高温碳化,得中间体;S3、将中间体加入熔融状态的沥青中,冷却粉碎,得到前驱体;S4、将前驱体于保护气中高温碳化,得到锂离子电池改性石墨负极材料。本发明通过将ZIF8/天然球形石墨复合材料高温碳化后,包覆沥青并再次碳化,使石墨表面和孔隙中包含软碳,既减少了表面层石墨的剥离,又提高了锂离子的脱嵌速率,提高其倍率性能,且制备工艺简单,条件温和,具有美好的应用前景。
本发明公开了一种硫铟锌和二氧化钛的异质结纳米材料的制备方法,本发明是通过水热法,在TiO2纳米杆上原位生长ZnIn2S4得到具有晶格缓冲层结构的ZnIn2S4/TiO2异质缓变结纳米复合材料。方法是首先用静电纺丝法来制备TiO2纳米杆,然后通过将得到的TiO2纳米杆均匀分散到一定量的醋酸锌、三氯化铟和硫代乙酰胺溶液中,然后该混合液转移至高压釜中,在一定温度下(120~180℃)保持一定的时间(6~24h),能可控制备ZnIn2S4纳米片负载量的ZnIn2S4/TiO2异质结纳米复合材料。本发明ZnIn2S4/TiO2异质结纳米复合材料在可见光光催化降解有机物、光解水领域具有低成本应用前景。
本发明公开了一种离子液体交联碳气凝胶改性聚甲醛材料及制备方法,包括碳气凝胶的制备、碳气凝胶超细粉体的制备、离子液体交联碳气凝胶复合材料的制备和改性聚甲醛材料的制备4个步骤,本发明中引入的离子液体交联碳气凝胶复合材料,对聚甲醛结晶具有成核作用,可以促进聚甲醛成核,提高聚甲醛的热稳定性,而且得到的复合材料可以对聚甲醛产生的甲醛气体进行吸附,减小甲醛气体的释放量,使聚甲醛材料更加安全,并且吸附性和热稳定性均得到改善,此外,离子液体1‑N‑丁基‑3‑甲基咪唑六氟磷酸盐的加入使碳气凝胶超细粉体功能化,对甲醛气体具有优异的吸附性能。
本发明涉及一种金属内衬纤维缠绕储气瓶固化自紧热处理一体化工艺,包括:将浸有树脂的碳纤维束带以低张力缠绕在铝合金内衬上并安装气阀等其余部件,得到未固化的储气瓶;在未固化储气瓶内外部双面施以1.5~2MPa的等大压强,内部施压的介质为导热油,外部施压的介质为气体;对未固化储气瓶进行加热、保温,实现纤维复合材料的固化;在固化阶段的末尾增大储气瓶内部的油压并保压,完成气瓶自紧和内衬的时效处理。本发明实现了复合材料储气瓶的固化、自紧和时效处理的一体化,提高了储气瓶加工成型效率;利用热压罐进行固化,保证了固化成型质量;高温气体和液体可以减少铝合金内衬在自紧时产生的残余拉应力,从而使纤维复合材料层产生更大的自紧力。
本发明涉及一种掺氮三维双连续多孔碳与石墨烯的复合电极及制备与应用,属于电容器电极技术领域。包括集流体和复合材料,复合材料负载在集流体表面,复合材料含有掺氮三维双连续多孔碳和石墨烯;掺氮三维双连续多孔碳多孔碳颗粒用于充当间隔物以避免石墨烯的重新堆叠,且用于增大与石墨烯的接触面积。制备方法为将掺氮三维双连续多孔碳和石墨烯混合,加入粘结剂和溶剂,然后涂布于集流体上,或将集流体浸没其中;干燥后即得到复合电极。本发明提供的掺氮三维双连续多孔超薄碳与高导电率石墨烯复合的超级电容器的电极,具有优异的导电能力、高于传统电容器的比容量与能量密度、良好的电化学循环稳定性,且工艺简单,成本低廉,环境友好。
本发明公开了一种导电浆料及其制备方法和应用。该浆料由质量百分含量如下的各原料组成:30~40%的银-石墨烯复合材料,30~48%的有机树脂,5~10%的交联剂和12~26%的稀释剂。其中,银-石墨烯复合材料按如下方法制得:将氧化石墨和有机银加入有机溶剂和去离子水组成的混合体系中超声分散;搅拌混合体系的同时,向混合体系中滴加水合肼;在室温下搅拌20~30min后,升温至60~70℃,反应2~3h,冷却至室温,过滤,用去离子水清洗,真空干燥,得到银-石墨烯复合材料。本发明在较低银含量条件下即可满足光伏器件对电性能的需求,适用于柔性衬底,与衬底ITO材料的附着力强,耐温湿性能好,细线印刷性能优异,显著地降低了浆料的生产成本。
本发明提供了一种双碳修饰的硒化锌分层多级微球的制备方法。具体过程是:将硝酸锌、柠檬酸钾和乌洛托品按一定比例配制成均匀溶液,通过沉淀法形成柠檬酸锌与乌洛托品的混合物。将混合物置于管式炉中硒化得到硒化锌单碳复合材料。再将硒化锌单碳复合材料分散到三(羟甲基)氨基甲烷溶液中,加入盐酸多巴胺进行包覆。包覆物高温煅烧后形成双碳修饰的硒化锌分层多级微球。其作为钾离子电池负极材料,相较于未进行碳包覆以及单碳改性的硒化锌,表现出较好的电化学性能。硒化锌双碳复合材料与普鲁士蓝组装成钾离子全电池也具有稳定的比容量,在钾离子电池领域具有潜在的应用价值。
本发明提供了一种具有高流动性、无泌水等特点的预应力孔道压浆剂,包括以下组分,减水剂2~10%,粘度改性剂0.1~10%,消泡剂0~1%,凝结时间调节剂35~78%;所述的凝结时间调节剂包括以下组分:熟料28~52%;石膏42~68%;填料4~30%;促凝剂0~3%;本发明还提供了上述预应力孔道压浆剂的制备方法以及使用方法。本发明由于其中包含有水泥凝结时间调节剂,因此可根据外部气温变化调整水泥基复合材料的凝结时间,保证水泥基复合材料正常使用和强度的正常增长,同时水泥凝结时间调节剂的加入,使水泥基复合材料后期产生微膨胀性。
本发明涉及一种涂层氮化硼石英纤维的制造方法,属石英纤维生产技术领域。本发明是将水溶剂型氮化硼用去离子水进行稀释后,在石英纤维拉制过程中,对其表面进行涂覆处理。采用本发明方法生产制造的涂层氮化硼石英纤维可以有效降低石英纤维增强氮化硅复合材料的脆性。解决了现有在采用石英纤维织物为增强相,制备石英纤维增强氮化硅复合材料时,由于未进行处理的石英纤维与氮化硅基体形成强界面结合,裂解过程中基体收缩产生的裂纹易于贯穿纤维,导致材料发生脆性断裂的问题,适用于制备石英纤维增强氮化硅复合材料时使用。
本发明公开了一种提高摩擦材料的摩擦磨损性能的方法,它解决了现有技术存在高温制动摩擦材料不耐磨及摩擦系数不稳定的问题,其特征在于:在摩擦材料中添加自制的复合材料使摩擦材料制动时在制动对偶面形成转移膜,而提高摩擦材料的摩擦磨损性能。自制复合材料制作具体步骤:先将聚苯硫醚及聚四氟乙烯粉碎过筛,按1∶1混合,制成混合物;然后对混合物用硫化锌、氟化钙材料进行改性,配方比例为:有机混合物∶硫化锌∶氟化钠=1∶2∶2;再将上述材料混合,用2.5%的添加量添加在摩擦材料中混合均匀;再将复合材料进行压制及固化处理,制成具有转移膜特性的耐磨损性能更好的摩擦材料。具有工艺合理、成本低廉、节能环保、磨损性优良等优点,具有推广应用价值。
本发明是一种转底炉炉底陶瓷材料复合凸缘砖,可用于多个工业领域的还原或预热转底炉,例如固废处理、垃圾热解、物料预热等用途的工业炉。该凸缘砖陶瓷材料复合材料包括凸缘砖陶瓷材料、支承座铸钢、及表面耐磨损抗侵蚀涂层。其特征是:支承座铸钢与炉底钢结构连接,凸缘砖陶瓷材料起到的支撑作用,表面耐磨损抗侵蚀涂层实现熔渣和凸缘砖陶瓷材料隔离,达到凸缘砖用凸缘砖陶瓷材料复合材料的耐磨损抗侵蚀的目的。使用本发明所述的凸缘砖用凸缘砖陶瓷材料复合材料,抗熔渣侵蚀抗CO侵蚀,从而寿命长;同时材料强度高耐磨损,使用安全可靠。
中冶有色为您提供最新的湖北有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!