本发明涉及导热复合材料领域,具体地说是一种机械球磨法制备PS导电复合材料的方法。该PS导电复合材料的原料重量比为:石墨:5‑18%、氮化铝:0.1‑0.9%、纳米氧化铝:0.6‑2.5%、氮化硼:0.3‑1.2%、偶联剂:0.05‑0.5%、分散剂:0.3‑1.5%,其余为PS粉,制备方法为将原料按比例混匀后置于振动罐内振动100‑120 min,使各成分均匀分散到PS基体中,取出振动后的反应物,填充于平板硫化机的模具中,高温热压后脱模得到PS导电复合材料。本发明的PS导电复合材料具有良好的导热性能的同时,还兼具很好的抗拉强度,且制备方法反应效率高,节约能源,无工业废料,生产成本低,市场前景好。
本发明公开了一种利用苝酐非共价修饰石墨烯制备环氧基复合材料的方法。将0.02克石墨烯加入到80毫升N‑甲基吡咯烷酮中,超声分散0.5~1h,再加入0.0037克醋酸锌、0.0392克3,4,9,10‑苝四甲酸二酐和0.0242克三羟甲基氨基甲烷,继续超声分散0.5~1h,然后在氮气氛下于180℃反应10~14h,待反应结束后,将反应液倒入无水乙醇中沉析出料,过滤,所得滤出物经真空干燥,制得苝酐非共价修饰石墨烯,然后将制得的苝酐非共价修饰石墨烯加入到环氧树脂固化体系中,经固化反应,制得制得环氧基复合材料。本发明方法操作简单,易于推广,且所制得的环氧基复合材料充分利用了苝酐和石墨烯性能上的协同增强效应,使制得的环氧基复合材料的韧性、耐热性及机械性能得到大幅提升。
本发明属于化学析氢能源领域,具体为基于Ru/r‑CoP复合材料水解制氢催化剂的制备方法,包括制备钴基前驱体、磷化钴(CoP)前驱体和磷空穴前驱体(r‑CoP),将所述磷空穴前驱体(r‑CoP)分散在水中,同时加入适量的水合三氯化钌,再加入硼氢化钠溶液还原,经离心、洗涤、干燥处理后得到磷空穴前驱体负载钌复合材料(Ru/r‑CoP);本发明通过丰富磷空穴负载的钌纳米复合材料,提高钌负载在前驱体上的分散性和导电性从而提高本征催化活性,Ru/r‑CoP复合材料在碱性的硼氢化钠水溶液中展现出了高效的析氢性能,为制备高效的硼氢化钠水解析氢催化剂提供一种有效的合成途径。
本发明涉及电催化氧化还原技术领域,具体涉及一种富氧空NC@BiOCl‑CNTs复合材料及其制备方法和应用。所述富氧空位NC@BiOCl‑CNTs复合材料具体为以PDA@Bi‑CNTs复合材料为前驱体经碳化、酸浸制备而成。富氧空位NC@BiOCl‑CNTs复合材料在碱性溶液中呈现出高效的氧还原性能;作为锌‑空气电池阴极材料,NC@BiOCl‑CNTs催化剂具有良好的长期稳定性,保持155小时不衰退,同时具有高的功率密度,能够达到170.7mW/cm2。
本发明公开了一种原位阻隔重金属污染的土壤‑矿物复合材料及其制备方法和应用。所述的土壤‑矿物复合材料采用土壤、矿物材料和水制备而成,其中,土壤和矿物材料的重量配比为6~9:1~4,水的用量为土壤和矿物材料重量之和的1倍以上;所述的矿物材料为硅酸盐矿物和/或多孔结构矿物。本发明所述复合材料的制备方法为:将配料量的土壤和矿物材料混合均匀,再加入配料量的水,经浸渍后即得。本发明所述复合材料成本低、环境兼容性高、不易板结堵塞,运行效率高且修复效果好。
本发明提供一种GaSn/NC复合材料的制备方法,属于复合材料技术领域。该方法包括以下步骤:(1)将NaOH、EDTA和NaCl加入去离子水中溶解;(2)向溶液中加入Ga源和Sn源,搅拌溶解;(3)在‑20℃~‑30℃条件下冷冻干燥,得前驱体粉末;(4)将前驱体粉末在惰性气体下,于550℃~850℃的温度下热处理1~4h;(5)用去离子水清洗,除去NaCl模板,即得GaSn/NC复合材料。本发明制备得到一种三维多孔GaSn/NC复合材料,具有优异的自愈性能,可有效避免在充放电过程中活性物质由于体积膨胀断裂或粉化而失活,从而可以提高金属锡作为负极材料的循环寿命。
本发明提供了一种改性β环糊精‑GO复合材料。β环糊精作为一种优异的载体,可与缓蚀剂分子包结,使分子均匀缓慢释放,从而延长缓蚀剂分子的缓蚀作用,但其溶解性较差。本专利提出利用硅烷偶联剂KH560改性β环糊精,提升环糊精的溶解性,并将改性后的β环糊精与氧化石墨烯GO结合制备出改性β环糊精‑GO复合材料,该复合材料可负载缓蚀剂分子并作为填料添加到涂料中改善涂层的耐腐蚀性能。
本发明公开了一种聚吡咯/秸秆导电复合材料的制备方法。首先将粉碎后的秸秆水洗,干燥,然后加入去离子水和吡咯单体,充分搅拌分散,再加入过硫酸铵溶液,通过氧化聚合使得聚吡咯包覆于秸秆颗粒表面,抽滤并用去离子水洗涤,最后真空干燥即可得到聚吡咯/秸秆导电复合材料,该聚吡咯/秸秆导电复合材料能够用作导电填料使用。本发明制备的将聚吡咯包覆在秸秆粉表面,制备的导电填料具有很高的导电率,并且秸秆环保易得,成本较低,适合大规模生产。
本发明的四氧化三铁/氧化石墨烯(Fe3O4/GO)磁性复合材料的制备方法,利用GO表面所含有的大量的环氧基活性基团,通过点击化学合成方法将GO键合到巯基修饰的磁性微球表面。其制备过程包括:将巯基修饰的磁性微球Fe3O4/SiO2/SH和GO加入到pH为6.5~10.0的水溶液中,超声分散后置于60~100℃反应并搅拌,反应完全后停止反应并外加磁场使Fe3O4/GO和液体分离,最后用水清洗、真空干燥即得。该制备方法简单快速,条件温和,成功地制备了大量GO涂层的Fe3O4/GO磁性复合材料。特别是在水溶液pH为6.5~7.5时制备的一种Fe3O4/GO磁性复合材料产物Fe3O4/GO-B表面有很厚的氧化石墨烯涂层,富集能力更优。
本发明公开了一种改性硅藻/ESO/聚丙烯复合材料及其制备方法。复合材料各组分的质量百分比含量为:聚丙烯基体树脂75~80%、改性硅藻15~20%、增塑剂2.5~5%、其他助剂0.5~2%,各组分质量百分比含量之和为100%,改性硅藻是用偶联剂对硅藻土改性制得,偶联剂用量是硅藻土质量的2~5%。先用偶联剂改性硅藻土,得改性硅藻,然后按照上述组分比例配料,并进行高速混料处理,得混合物料;将混合物料熔融挤出,造粒,注塑成型,即制得改性硅藻/ESO/聚丙烯复合材料。本发明的方法操作简单,通过在聚丙烯中掺杂改性硅藻、ESO提高聚丙烯抗冲击强度和硬度,并加大了无机粒子的填充量,降低了成本和对环境的污染。
本发明公开了一种利用木屑粉制备聚丙烯基木塑复合材料的方法。按照以下质量比称取原料,聚丙烯:分散润滑剂:偶联剂:抗氧剂:木屑粉=90~110:6~13:2~4:0.2~0.8:90~110;将聚丙烯在170~180℃的炼塑机上熔融塑化,然后依次加入抗氧剂、木屑粉、分散润滑剂和偶联剂,薄通5~7次后出片,制得塑化片材;将塑化片材放在平板硫化机上压制,即制得聚丙烯基木塑复合材料。本发明方法操作简单,易于大规模推广应用,且通过各种加工助剂的加入,改善了聚丙烯基体树脂与木粉之间的相容性,从而提高了木塑复合材料的加工性能和相关力学性能。
本发明公开了高性能镁掺杂磷酸钒钾/碳复合材料的制备方法,通过反应原料与螯合剂形成均匀溶液,采用溶胶‑凝胶法结合高温煅烧法制备高活性的镁掺杂的磷酸钒钾/碳复合材料。本发明中螯合剂在高温惰性气氛条件下原位生成高电子电导率的碳,碳既可在高温煅烧中作为还原剂,又可抑制产物颗粒的长大和团聚。钾位掺镁引起材料结构发生变化,产生钾空位,同时碳包覆提高材料的电子电导率,使得镁掺杂磷酸钒钾/碳复合材料具备优异的电化学性能。
本发明公开了一种利用花生壳粉制备聚乙烯基木塑复合材料的方法。按以下质量比称取原料,花生壳粉:超低密度聚乙烯:过氧化苯甲酸叔丁酯:二月桂酸二丁基锡:聚乙烯蜡:邻苯二甲酸二乙酯:马来酸辛基锡=20~50:20~50:0.05~1.5:0.02~1.2:10~15:2~7:0.5~4,将原料在高速搅拌机上混合均匀,制得混合物料,然后在双螺杆挤出机中反应挤出,制得挤出物料,将装有挤出物料的模具放在平板硫化机上压制,即制得聚乙烯基木塑复合材料。本发明方法操作简单,废物利用,易于大规模推广,且所制得的聚乙烯基木塑复合材料无毒环保、综合性能优良、易加工,能够替代传统木材,应用前景广阔。
本发明公开了一种RGO改性Fe3O4‑SnO2复合材料的制备方法及其应用。通过简单的共沉淀法合成FeSnO(OH)5,结合在管式炉里面的热处理,即可得到多孔立方盒Fe‑SnO2,接着与聚多巴胺包覆,碳化后与氧化石墨烯复合,热处理后得RGO改性Fe3O4‑SnO2复合材料,该复合材料应用于锂离子电池负极材料。本发明利用简单的共沉淀法以及碳材料改性得到RGO改性Fe3O4‑SnO2复合材料,将其作为储能电极材料时,展现了高容量、循环稳定性能好的优势。本发明方法提供了一种不同种类氧化物原位共掺杂的合成策略,为获得高容量、高倍率、循环稳定性的材料提供借鉴意义。
本发明公开了一种聚乙烯/碳酸钙/剑麻纤维微晶复合材料的制备方法。取55~170g十二羟基硬脂酸加入三口烧瓶中,加热到95~105℃,待十二羟基硬脂酸完全熔融后加入0.5~3g催化剂,然后升温到130~140℃,反应6~8h后得到十二羟基硬脂酸酯,取4~13g丙烯海松酸,0.5~1.2g催化剂,在N2保护的条件下搅拌升温至120~140℃,恒温反应10~14h,得深褐色粘稠物即为丙烯海松酸接枝聚十二羟基硬脂酸酯,称取40g轻质碳酸钙、10g剑麻微晶、3.3~5.5g丙烯海松酸接枝聚十二羟基硬脂酸酯和60g的聚乙烯搅拌均匀,经注射成型制得聚乙烯/碳酸钙/剑麻微晶复合材料。具有原料丰富,价格便宜,绿色环保,无污染,工艺简单等优点。本发明方法原料丰富,成本低廉,绿色环保,工艺简单,便于规模化生产。
本发明属于高分子复合材料技术领域,涉及一种高强韧多功能海藻酸钠基纳米复合材料及其制备方法与应用,它是由如下原料制备而成的:海藻酸钠、甘油、钴配合物修饰的埃洛石纳米管。本发明还提供了上述高强韧多功能海藻酸钠基纳米复合材料的制备方法。本发明所制备得到的高强韧多功能海藻酸钠基纳米复合材料具有优异的水汽阻隔、力学强度、韧性、紫外阻隔、抗菌、氨气响应变色等性能,同时还能保持较高的光学透明性,且制备工艺简单、环保、成本低廉、适于放大生产,在食品包装、智能响应材料、生物医学、抗菌材料、氨气检测、环境监测与安全等领域具有广泛的应用价值。
本发明公开了一种空心MXenes基金属氧化物复合材料,成分为V2CTx MXenes、还原氧化石墨烯和金属氧化物。V2CTx MXenes通过基底材料经刻蚀剂、扩层剂和离子液体处理所得;还原氧化石墨烯为中间层材料,起连接、抑制堆叠和诱导生长的作用;金属氧化物NiMoO4的形貌为花瓣褶皱状结构,提供赝电容;复合材料的微观形貌具有碳壳“包埋”的空心结构。其制备方法的关键技术为:采用非恒定离心条件和离子液体调控微观形貌。作为超级电容器的应用,在‑0.2‑0.35V范围内充放电,在放电电流密度为1 A/g时,比电容为1000‑1100 F/g;在10 A/g的电流密度下经过3000次循环以后比电容性能仍可达到原来的88‑89%。且具有优异的电化学特性和化学稳定性。
本发明涉及一种新型铝基复合材料及其制造方法。一种新型铝基复合材料,包括以下重量份的组分:碳纤维10‑25重量份、聚丙烯晴4‑10重量份、氧化锌颗粒10‑20重量份、石墨粉10‑30重量份、纳米二氧化硅8‑15重量份、纳米二氧化钛2‑6重量份。本发明所述新型铝基复合材料及其制造方法,具有制造方法简单、抗腐蚀性能好等优点。发明人前期进行了大量的组分以及用量的筛选实验,意外的发现,本发明的技术方案通过合理的配比以及各组分的组合具有显著的提高强度的效果。提高了铝基复合材料材料的抗腐蚀性能,较大程度的增大了其弹性模量和低膨胀系数,成本低,便于推广应用。
本发明公开了一种毛竹基Fe/Co双金属生物炭复合材料的制备方法及应用,将干燥的毛竹切块后置于体积浓度为5%的稀氨水溶液中,在80℃条件下浸泡8h,后用超纯水洗净,并在80℃的烘箱内干燥24h,将其浸没在摩尔浓度为1mol/L的铁钴复合盐前驱体溶液中,于60℃反应12h。反应完成后取出材料在60℃烘箱内干燥12h。将其置于马弗炉中于600℃条件下焙烧3h,冷至室温,磨碎过100目筛,即获得毛竹基Fe/Co双金属生物炭复合材料。将该复合材料应用于阿特拉津废水处理。本发明毛竹基Fe/Co双金属生物炭复合材料对阿特拉津具有良好的吸附效果,且速率快、成本低廉。
一种基于RGO‑CS‑Fc/Au NPs纳米复合材料结合适配体检测甲胎蛋白的方法,采用电沉积技术以及静电吸附作用将RGO‑CS‑Fc/Au NPs修饰在丝网印刷电极表面。通过纳米技术以及分子间作用力将AFP适配体负载在RGO‑CS‑Fc/Au NPs材料表面,适配体因其不稳定的空间结构而以单链结构的形式存在复合材料表面。在电极表面中加入AFP后,AFP能够与AFP适配体特异性结合,生成稳定的空间结构,从而可以有序的排列在电极表面。通过DPV方法检测电流值,并描绘出该电流与甲胎蛋白浓度的关系曲线,实现对甲胎蛋白的定量检测。该方法操作简单、省时、费用低且具有较低的检测限。
本发明属于高分子复合材料技术领域,涉及一种多功能聚乙烯醇纳米复合材料及其制备方法,它是由如下原料制备而成的:聚乙烯醇、改性的纤维素纳米晶。本发明还提供了上述多功能聚乙烯醇纳米复合材料的制备方法。本发明所制备得到的多功能聚乙烯醇纳米复合材料具有优异的紫外线屏蔽性能、抑菌性能、氨气响应性能、力学性能、水汽透过性、热稳定性,同时还能保持高的光学透明性,且制备工艺简单、环保、成本低廉,且适于放大生产,在包装、紫外线防护等领域具有很好的应用前景。
一种柿子单宁复合材料的制备方法,柿子单宁:0‑乙酰基:壳聚糖:透明质酸的质量比(0.5‑2):(0.5‑2):1:1。将该材料作为抗电离辐射应用时,在细胞培养基中添加柿子单宁复合材料粉末制成混合培养基,在X射线辐射L02细胞后,经CCK‑8检测法检测细胞活性,接受复合材料预处理的细胞活性增长量最大可达到35.354%。抗电离辐射性能效果好,仅需200μg/ml即可获得显著的防护效果;制成的柿子单宁复合材料稳定利于储存,材料有效成分对人体无害,副作用低,可以作为保健品、药品、化妆品的功效原料。
本发明属于锂电池电极材料技术领域,公开了一种Si@TiO2空心核壳复合材料的制备方法,包括以下步骤:(1)取一定量硅纳米颗粒,溶于葡萄糖溶液中,超声混合;(2)将所述混合液A转移至水热反应釜中,在水热反应得Si/C复合材料前驱体;(3)将Si/C复合材料前驱体溶于一定量的钛源溶液中,老化8‑12h,真空干燥,得Si/C/TiO2前驱体;(4)将Si/C/TiO2前驱体在空气中煅烧即得Si@TiO2空心复合材料。该方法工艺简单,条件控制方便,得到一种Si@TiO2空心核壳结构,大小均匀、分散性好,且用作负极材料可以提升锂离子电池的倍率性能和循环稳定性。
本发明公开了一种纳米TiN颗粒增强铝基复合材料的制备方法。将纳米TiN颗粒和Al粉以质量比为TiN : Al=1 : 20~1 : 40混合后置于球磨罐中干磨,每球磨1分钟,停机静置2分钟,球磨过程总时长为43分钟,得到纳米TiN和Al粉的复合粉末;将铝基体原料加热、熔化,在630℃时对其机械搅拌、扒渣,在搅拌的同时按纳米TiN的加入量为铝基体的质量百分含量0.1~0.2%?的量,将复合粉末在5~20分钟内加入到铝合金熔体中,搅拌15分钟后升温至690?°C对熔体超声处理10~20分钟,扒渣后升温至750?°C,浇入到预热至350?°C的模具中,冷却后脱模。本发明制备的纳米TiN颗粒增强铝基复合材料,有效解决了纳米TiN颗粒在铝合金熔体中润湿性和分散性差的难题,且成本低、操作简单。
本发明属于高分子复合材料技术领域,涉及一种兼具紫外阻隔与抗菌功能的聚乙烯醇复合材料及其制备方法,它是由如下原料制备而成的:聚乙烯醇、钴配合物晶体[Co4(H8P3NC3O9)2]·H2O,式中(H8P3NC3O9)为氨基三亚甲基磷酸失去4个质子的阴离子。本发明还提供了上述聚乙烯醇复合材料的制备方法。本发明所制备得到的聚乙烯醇复合材料具有优异的紫外线阻隔性能、抑菌性能、氨气响应性能、力学性能、水汽透过性、热稳定性,同时还能保持高的光学透明性,且制备工艺简单、适于放大生产,在包装、抗菌材料、氨气检测等领域具有潜在应用价值。
本实用新型公开了一种射流辅助调制激光低损伤加工碳纤维复合材料系统,其激光聚焦射流辅助切割单元包括聚焦装置和射流辅助装置,聚焦装置包括于镜筒内设置的的聚焦透镜和保护镜,镜筒上筒口的上方设有45°角斜置的反射镜;其射流辅助装置包括喷嘴和流体供给机构,流体供给机构通过管路连通镜筒,喷嘴通过锥形接头安装于镜筒的下筒口;其激光器设于反射镜的一侧,激光器发出的激光束经反射镜反射后进入镜筒,激光束经聚焦透镜和保护镜后聚焦于从喷嘴喷出射流中;其工件运行单元包括设于喷嘴下方的工作台,工作台上设有装夹碳纤维复合材料于锯齿架上的夹具,工作台将碳纤维复合材料运行至激光束的切割范围内。
本发明涉及一种铝基复合材料及其制造方法。一种铝基复合材料,包括以下重量份的组分:碳纤维8‑20重量份、聚氯乙烯3‑12重量份、氧化锌颗粒10‑20重量份、石墨粉10‑30重量份、纳米二氧化硅8‑15重量份。本发明所述铝基复合材料及其制造方法,具有制造方法简单、耐热性能好等优点。发明人前期进行了大量的组分以及用量的筛选实验,意外的发现,本发明的技术方案通过合理的配比以及各组分的组合具有显著的提高强度的效果。提高了铝基复合材料材料的耐热性能,较大程度的增大了其弹性模量和低膨胀系数,成本低,便于推广应用。
本发明提供了一种有序排列碳纳米管/环氧树脂复合材料及其制备方法,其特征是:所用碳纳米管为至少负载有铁、钴、镍和四氧化三铁纳米粒子其中一种的碳纳米管,先用机械搅拌和超声波方法将1~15质量份的上述碳纳米管借助溶剂分散在100质量份的环氧树脂中,加热除掉溶剂后再加入10~50质量份的胺类固化剂并进一步混合均匀,真空除泡后将混合物浇注到置于强度为0.15~1.0特斯拉的磁场中的模具中,在室温下固化0.5~1h后,将模具从磁场中取出,最后在室温~120℃继续固化4~24h。本发明所提供的制备方法具有工艺简单、高效、成本低廉,所得产品有序化碳纳米管/环氧树脂复合材料具有优异的综合性能。
本发明涉及一种耐疲劳铝基复合材料及其制造方法。一种耐疲劳铝基复合材料,包括以下重量份的组分:碳纤维5‑25重量份、纳米二氧化钛3‑12重量份、铝粉18‑35重量份、白炭黑10‑30重量份、纳米二氧化硅8‑15重量份、SiC 10‑30重量份。本发明所述铝基复合材料及其制造方法,具有制造方法简单、耐疲劳等优点。发明人前期进行了大量的组分以及用量的筛选实验,意外的发现,本发明的技术方案通过合理的配比以及各组分的组合具有显著的耐疲劳的效果。提高了铝基复合材料材料的耐疲劳性能和良好的塑性,较大程度的增大了其弹性模量,并降低了膨胀系数,成本低,便于推广应用。
本发明公开了一种抗寒耐高温阻燃复合材料及其制备方法。所述抗寒耐高温阻燃复合材料包括以下重量份组分:热塑性树脂100份、玄武岩纤维20‑45份、碳纤维5‑15份、凯夫拉纤维5‑10份、抗氧剂0.3‑0.6份、阻燃剂10‑20份和稳定剂1‑3份。本发明还提供了所述复合材料的制备方法。本发明选择以玄武岩纤维为主,以碳纤维和凯夫拉纤维为辅的增强纤维,并通过优选各组分配比,明显提高了复合材料的机械性能、抗寒耐低温、耐高温和阻燃性能。
中冶有色为您提供最新的广西桂林有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!