本发明公开了一种复合材料管件与金属件的胶接连接方法,包括:(1)在复合材料管件内壁设置干态软胶,外壁抱箍弹性隔离膜;(2)在复合材料管件内壁和金属件插入段外壁涂胶;(3)将金属件插入复合材料管件中,直至干态软胶一部分变形嵌入复合材料管件内壁和金属件插入段外壁之间的缝隙,另一部分变形滑移至金属件端面;(4)待金属件完全插入后,拆下复合材料管件和金属件的连接处的弹性隔离膜,清除连接处的溢出胶,重新包上弹性隔离膜,直至胶接固化。本发明还公开了一种使用上述胶接连接方法的复合材料管件与金属件的胶接连接装置。本发明避免了复合材料管件的破坏,解决了胶接时无法加压的状况,提高了胶接连接工艺性能的可靠性。
本发明公开了一种PU复合材料的预埋件,包括支撑板,支撑板的两端开有螺栓过孔,在支撑板上、两端的螺栓过孔之间还开有过料孔。预埋所述预埋件的方法包括如下步骤:(1)预埋件装到PU复合材料加工模具中;(2)在所述预埋件上覆盖PU复合材料,再将加工模具合模加热,对PU复合材料进行热压发泡;(3)进行保压处理,使包覆有预埋件的PU复合材料定型;(4)开模,将包覆有预埋件的PU复合材料取出,将预埋件的螺栓过孔中PU材料清理取出,质检入库即可。本发明的优点在于,在制作PU复合材料时就可以把预埋件预埋,减少了操作工序,提升工作效率,更进一步的保证了PU复合材料通过预埋件与其他材料装配时的稳固性。
一种高效阻燃木塑复合材料,由木粉50~75份、塑料树脂10~30份、界面相容剂1~5份、冲击改性剂0.5~2份、润滑剂1~3份、其它功能助剂1~5份、阻燃剂10~30份制备而成,制备方法包括脱脂和烘干木粉的步骤,有机化改性膨润土、硼酸锌并机械研磨的步骤,在高速混合机中混合制得预混料的步骤,在双辊塑炼机中混合塑化再模压成型的步骤。有机化处理的膨润土、硼酸锌与氢氧化铝复配成新型阻燃剂,能在保持材料力学性能,提高木塑复合材料的阻燃效果,同时极大地减少氢氧化铝的用量;膨润土、硼酸锌有机超细化处理,解决了无机添加剂同其它成分界面相容性难,进而影响复合材料的机械性能的问题,满足木塑复合材料的阻燃要求。
本发明涉及一种蓝宝石复合材料及其制备方法。该复合材料具有至少一个基层和至少一个蓝宝石面层,基层和蓝宝石面层之间通过粘结剂粘合而成。该制备方法包括以下步骤:蓝宝石面层的制备;基层清洗;合片;辊压;釜压。本发明蓝宝石复合材料同时具备夹层玻璃和蓝宝石的优点。本发明还解决了不同材料间的热复合难题,特别是蓝宝石薄片与其他基层的复合难题。
本发明公开了一种大厚度树脂基复合材料固化制度的优化方法。本发明利用预浸料的动态差示扫描量热实验数据,得到预浸料的固化动力学方程;再利用数值分析软件和有限元仿真软件,建立复合材料固化过程的温度分布模型,实现了复合材料制造过程温度分布与固化度的数值模拟计算;基于支持向量机(Support Vector Machine,SVM)神经网络算法,建立代理模型进行优化问题求解,进而实现工艺参数的优化。经此方法优化后的固化制度可使复合材料中心固化温升在两个保温台阶峰值处分别降低54%和71%,复合材料中心低温下的固化度显著降低,保障了树脂分子大范围长链交联固化进而保障复合材料成型的力学性能,能广泛应用于风电、船舶及风扇叶片等大厚度树脂基复合材料部件的制造。
本发明涉及一种碳/二氧化锰复合材料,及其制备方法,该复合材料具有高比表面积、具有石墨烯结构。本发明方法以石墨和高锰酸钾为原料,具体步骤为:将原料石墨进行插层‑膨胀处理,得类石墨烯膨胀石墨;将所得类石墨烯膨胀石墨与高锰酸钾在震荡或静置条件下反应,经水洗后即得碳/二氧化锰复合材料。本发明所得的复合材料中碳材料的共轭结构保持较好,二氧化锰垂直生长在碳纳米片的表面。本发明制备的碳/二氧化锰复合材料可广泛应用于超级电容器、锂离子电池、燃料电池、能量转换等领域。此外,所得到的复合材料仍保持了骨架碳的疏松结构,复合材料中的二氧化锰能进一步反应为硫化物、氮化物。
本发明公开了一种热塑性复合材料的成型输送装置,用于输送热塑性复合材料经过上料区、加热区,然后进入冲压区,冲压后得到热塑性复合材料成型制件。该成型输送装置包括支架,导轨,包括底架、底架杆和夹具组成的底架输送部分以及由丝杆与伺服电机组成的驱动部分,在驱动部分的作用下,底架输送部分运载热塑性复合材料在支架的导轨上移动,依次经过上料区、加热区与冲压区,真正实现了集中一体式成型输送线,大大简化了现有的生产工艺输送过程,同时结合气缸的设置,能够自由调节承载热塑性复合材料的底架宽度以及夹持热塑性复合材料的夹具开合距离,从而适应不同尺寸和形状的热塑性复合材料,是一种结构简单,具有优良应用前景的成型输送装置。
本发明提供了一种MoS2/HKUST‑1复合材料及其制备方法,将纳米级硫化钼、铜源及苯三甲酸的溶液混合,在低温常压下制备一种MoS2/HKUST‑1复合材料,与现有技术比较,本发明的有益效果在于,本发明的制备方法反应条件温和,低温常压,操作容易;所述二硫化钼(MoS2)是一种典型的石墨烯类材料,金属原子层夹在两层硫原子层间,将二硫化钼(MoS2)引入到复合材料体系中,能够通过控制二硫化钼的含量有效地制备MoS2/HKUST‑1复合材料,且所述MoS2/HKUST‑1复合材料具备优秀的二氧化碳吸附捕捉能力,且重复利用率高。
本实用新型公开了一种同步测量小尺寸导电复合材料的应变及电阻的装置,其包括用于测量小尺寸导电复合材料发生形变时的应变值的引伸计、对称布置于小尺寸导电复合材料的上、下两端的两个陶瓷压头、贴设于陶瓷压头朝向小尺寸导电复合材料的表面上且用于与小尺寸导电复合材料充分接触的铜箔、设置于陶瓷压头背向小尺寸导电复合材料的表面上的刚性压头、用于测量小尺寸导电复合材料发生形变时的电阻值的电阻测量电路,引伸计夹持两个陶瓷压头,陶瓷压头的弹性模量大于或等于小尺寸导电复合材料的弹性模量的50倍,两个铜箔分别与电阻测量电路连接;优点是该装置结构简单、使用方便,且能够同步测量小尺寸导电复合材料发生形变后的应变值及电阻值。
本发明公开了纳米结构化可降解生物医用复合材料及其制备方法,该复合材料采用纳米结构化的磷酸钙粉末与可降解聚合物复合,其中纳米结构化的磷酸钙的组成为α相磷酸三钙、β相磷酸三钙、磷灰石中的任意两种;该复合材料制备方法通过采用溶液浇铸或非溶剂沉淀将纳米结构化的磷酸钙粉末均匀分散于可降解聚合物基体中,从而使复合材料达到纳米级复合,改进了复合材料的性能。本发明制备的纳米结构化可降解生物医用复合材料可以广泛地用于骨螺钉、骨接板以及骨组织工程等生物医用材料领域。
本发明涉及一种无机粘土与羧基丁苯橡胶复合材料的方法。无机粘土与羧基丁苯橡胶复合材料的制备方法,将无机粘土水悬浮液与羧基丁苯胶乳混合,形成均匀的混合液,再经过干燥、混炼、硫化,得到粘土与羧基丁苯橡胶复合材料,用无机粘土与羧基丁苯乳胶进行直接共混,其操作步骤如下:无机粘土水悬浮液制备、干燥、混炼、硫化。该方法不需要进行粘土的有机改性,在制备粘土水悬浮液过程不需要加热工艺,所制备的复合材料中粘土与橡胶基体之间存在离子键结合,在保证复合材料具有较高拉伸强度的同时,复合材料的定伸应力、撕裂强度有了大幅度提高。
本发明公开了一种基于先进复合材料性能的异形可抓取储存释放装置。SMP复合材料抓手安装在SMP复合材料抓手安装架底部,SMP复合材料抓手安装架顶部固定安装有拉伸滑轨槽支撑件,拉伸滑轨槽支撑件通过连接件固定连接上方旋转单元支撑型材;SMP复合材料抓手为由SMP复合材料自身围成的结构;拉伸滑轨槽支撑件和SMP复合材料抓手安装架经多根连杆后与SMP复合材料抓手的末端连接。本发明使用的复合材料参考了蛇鳞的结构,通过形状记忆聚合物SMP和橡胶的结合,使得装置既具有SMP记忆变形的特点,同时具有良好的拉伸、承载能力和很大的变刚度能力,使得该装置可适应各种形状的物体,且可以安全有效的储存被抓取的物体。
本发明公开了一种带沟槽的复合材料管的优化设计方法,包括:选定复合材料管的壁厚,建立该复合材料管三维实体模型;通过ANSYS软件对复合材料管三维实体模型进行网格划分,生成有限元模型;设置复合材料管模型的材料参数、施加边界条件与力载荷;通过ANSYS软件对生成的有限元模型进行有限元计算,生成复合材料管的总变形分布图;根据复合材料管的总变形分布图校核其刚度,判断复合材料管厚度的合理性。本发明利用Solidworks软件建立复合材料管的三维实体模型,利用ANSYS软件将建立的复合材料管三维实体模型生成有限元模型,并完成对复合材料管的壁厚、铺层角度和方式准确分析和设计。
本发明公开了一种硫导电氧化物复合材料及其作为锂硫电池正极材料的应用,所述硫导电氧化物复合材料的制备方法包括如下步骤:(1)取一定量二氧化钛,在还原性气氛中升温至800~1100℃烧结1~4小时,制备得到导电氧化物;(2)将升华硫溶解于溶剂中,按硫与导电氧化物的质量比为(2~1)∶1的比例加入导电氧化物,超声混合,去除溶剂后得到复合材料前驱体;(3)将复合材料前驱体充分球磨,得到硫导电氧化物复合材料。本发明制备工艺简单,利于实现工业化,无污染物排放,对环境友好;制备的复合材料体积比容量高,导电性好,循环稳定性强,可作为锂离子电池正极材料广泛应用于锂硫电池等领域。
本发明公开了一种含有过渡金属二硫化物纳米管的聚四氟乙烯耐磨复合材料。过渡金属二硫化物纳米管为二硫化钨纳米管和二硫化钼纳米管。按质量比过渡金属二硫化物纳米管在复合材料中的含量在3%~15%。本发明的含有过渡金属二硫化物纳米管的聚四氟乙烯耐磨复合材料具有高的耐磨性能和较低的摩擦系数。含有质量比10%~15%的过渡金属二硫化物纳米管的聚四氟乙烯复合材料的磨损率是纯聚四氟乙烯材料的1/160~1/210,是一般传统的过渡金属二硫化物硫化钨或硫化钼微粒填充的聚四氟乙烯复合材料的23%~28%。这种具有高耐磨性能和较低摩擦系数的聚四氟乙烯复合材料在机械、化工、航天等领域具有广泛的应用。
本发明属于涉及复合材料技术领域,提供了一种可高效共捕捉放射性或高毒性的阴阳离子的氧化银/氧化石墨烯复合材料的制备方法。本发明利用氨基酸作为连接剂和桥接剂,将无机纳米材料氧化银粒子有效负载到氧化石墨烯表面,制备具有共捕捉核废水中的放射性或高毒性的阳离子Cs+和阴离子I?能力的氧化银/氧化石墨烯复合材料。本发明的氧化银/氧化石墨烯复合材料不仅继承了氧化石墨烯有效吸附放射性或高毒性的阳离子Cs+的性能,而且还兼备了无机纳米粒子氧化银高效去除放射性或高毒性的阴离子I?的特性,而且对其他有毒离子表现出优异的吸附能力,对发展具高效共捕捉核废水中的放射性或高毒性的阳离子和阴离子的吸附剂具有重要的研究意义。
本发明涉及一种高强度轻质碳纤维复合材料的制备方法,包括如下步骤:1在连续长丝碳纤维表面涂布上浆剂,然后将预处理后的连续长丝碳纤维缠绕制成具有高度取向的圆锥体C/C复合材料的预成型胚体;2将步骤1得到的预成型体真空浸渍;3)将经过步骤2处理得到的预浸料在氮气保护下进行加压炭化,再浸渍浸渍剂溶液填充空隙,之后进行化学气相沉积CVD;4)将步骤3制备得到的产物进行石墨化,再浸渍,再CVD;5将步骤4得到的致密的碳/碳复合制品进行水蒸气活化得到高强度轻质碳/碳复合材料碳/碳复合材料,所述高强度轻质碳/碳复合材料的拉伸强度达到800MPa以上,热导率为500-530W/(m·K),热扩散率为4.4cm2/s。
本发明公开了一种氢氧化镍/二氧化锰/碳/镍分级多孔复合材料及其制备方法,材料以Ni‑MOFs为前驱体,通过将Ni‑MOFs碳化及氧化还原获得所述氢氧化镍/二氧化锰/碳/镍分级多孔复合材料。本发明借助MOFs材料的结构和性质,通过水热法,借助“氧化还原反应”原理一步法直接获得Ni(OH)2/MnO2/C/Ni复合材料,且产物具有MOFs前驱体类似的形貌;采用碳化和水热法,直接获得了Ni(OH)2/MnO2/C/Ni复合材料;使用的试剂在实验室或工业化生产中来源广泛、价格低廉,试验设备仪器简单、操作方便,便于批量化或工业化生产;Ni(OH)2/MnO2/C/Ni复合材料具有分级多孔结构,具有广泛的应用前景。
本发明公开了一种包含铅-石墨烯复合材料的铅蓄电池板栅,板栅的配方以重量百分比计,组成为:锡0.01~1.0%、铅-石墨烯复合材料0.5~10.0%、铅为余量,所述的铅-石墨烯复合材料利用复合电镀技术制备得到。制得的铅-石墨烯复合材料的密度比石墨烯大,可作为添加剂直接与其他金属混合,制得合金,保证石墨烯均匀地分布在合金内部,克服了石墨烯密度低,与其他金属混合不均匀的缺陷。利用铅-石墨烯复合材料制得铅蓄电池板栅的硬度、抗蠕变性能、耐腐蚀性能都得到显著提高。
本发明公开了一种谷朊粉/纳米二氧化硅原位复合材料及其制备方法。谷朊粉/纳米二氧化硅原位复合材料,其特征在于,它包含谷朊粉100重量份、纳米二氧化硅粒子2~20重量份、甘油5~43重量份。其制备方法是,以谷朊粉的氨水溶液为介质,加正硅酸乙酯,水解生成纳米二氧化硅粒子,加入甘油增塑剂,干燥后模压成型,获得谷朊粉/纳米二氧化硅原位复合材料。本发明所涉及的主要原料谷朊粉属于可再生农业资源,为小麦淀粉工业加工副产品,来源广泛。本发明所涉及的谷朊粉/纳米二氧化硅原位复合材料的制备方法与工艺流程简单,制备过程不产生有毒有害物质,易于推广实施,在可降解蛋白质塑料及其复合材料领域具有广阔的应用前景。
本发明提供了一种锯片用复合材料,所述的锯片用复合材料的主要质量组分及配比如下:铜、20-30份;铁、20-30份;锡、10-20份;金刚石、2-5份。制备所述锯片用复合材料的方法如下:(1)将上述各种已磨成粉末的材料混和后,置于混料机混和均匀得到粉末状锯片用复合材料;(2)将步骤(1)制得的粉末状锯片用复合材料在常温下压制成型;(3)将成型材料再进行烧结固化。本发明在原有锯片刀头材料中添加少量合金元素,使得锯片刀头强度提高10%以上;延长了锯片的使用寿命。
本实用新型提供一种新型高密度复合材料隧道应急逃生通道,包括若干首尾相接的逃生通道单体,逃生通道单体包括管体,管体由内至外包括第一高密度复合材料层、第二高密度复合材料层、第三高密度复合材料层;第一高密度复合材料层为中空管状,第二高密度复合材料层包括螺旋缠绕在第一高密度复合材料层外周的高密度复合材料软管,高密度复合材料软管为两根高密度复合材料线螺旋缠绕形成,第三高密度复合材料层为高密度复合材料线螺旋缠绕在第二高密度复合材料层外表面形成使得新型高密度复合材料隧道应急逃生通道外表面平整。本隧道应急逃生通道,抗冲击性能更强、曲绕性更好,可通过一定的变形释放外加的负载。
一种贝壳微粉填充生物基树脂复合材料及其制备方法,包括如下质量配比的组分:(1)贝壳微粉20~60、生物基树脂40~80、偶联剂1.5~8、抗氧化剂0.2~0.4;或者是,(2)贝壳微粉20~60、生物基树脂40~80、异氰酸酯0.6~3、有机锡或有机亚锡催化剂0.05~0.15、抗氧化剂0.2~0.4。本发明还公开了该复合材料的制备方法。本发明的优势在于:采用超声空化作用将贝壳微粉破碎分散的同时,能加速偶联剂或异氰酸酯在其表面的接枝或化学键合,大大缩短了贝壳微粉的改性时间和复合材料成型周期,提高了贝壳微粉与生物基树脂的界面相容性和粘结强度。该复合材料能广泛应用在汽车内饰件、文具品、交通路障、体育用品、食品袋、垃圾袋、一次性桌布、户外花盆、饭盒、刀叉等生产或消费领域。
本发明涉及到一种铜?石墨烯复合材料及其制备方法,包括石墨烯和铜,其特征在于所述石墨烯以片状结构均布在铜基体中,所述石墨烯的分布密度为100片/厘米2至3000片/厘米2。优选所述石墨烯含量为0.01%~0.30wt%,余量为Cu。本发明在铜中添加石墨烯制成铜?石墨烯复合材料,铜基体可作为导电主体使该复合材料的导电性能接近于纯铜,而石墨烯作为增强相,抗拉强度和屈服强度性能均获得提高;因此该铜?石墨烯复合材料可广泛应用于消费电子、电气、航空航天、高铁、引线框架与电子接插件制备领域;本发明所提供的制备方法适合工业化、规模化生产。
本发明公开了一种钨酸锌/石墨烯复合材料及其制备方法和应用,属于复合材料制备技术领域。所述制备方法,包括以下步骤:(1)将氧化石墨烯加入水中得到氧化石墨烯分散液;(2)依次往氧化石墨烯分散液中添加可溶性锌盐、可溶性钨酸盐和乌洛托品得到混合体系,搅拌均匀后进行水热反应制得所述钨酸锌/石墨烯复合材料。本发明通过一步水热法完成钨酸锌/石墨烯复合材料的制备,方法简单;制得的复合材料具有良好的倍率性能和导电性能。本发明通过调整乌洛托品的用量来调节复合材料的形貌,得到的棒状复合材料的电化学性能优于颗粒状复合材料。
本发明公开了一种UiO‑66‑NH2复合材料及其制备方法和在海水淡化中的应用,所述UiO‑66‑NH2复合材料包含经3‑氨丙基三乙氧基硅烷修饰的载体和UiO‑66‑NH2膜层,其中,所述UiO‑66‑NH2膜层通过共价连接在所述载体上。本发明中,将经3‑氨丙基三乙氧基硅烷修饰的载体置于UiO‑66‑NH2膜反应液中反应得到所述UiO‑66‑NH2复合材料。本发明的UiO‑66‑NH2复合材料,制备方法简单,具有优异的海水淡化处理性能,适合大规模推广。
本发明公开了一种八硫化九钴与二氧化钛的复合材料及其制备方法和应用,该制备方法,通过水热法,反应生成了Co(OH)2CO3纳米线,以此为载体,通过原子层沉积TiO2,得原子层沉积的TiO2@Co(OH)2CO3纳米线,通过硫化钠硫化,得八硫化九钴与二氧化钛的复合材料。该复合材料包括:TiO2中空管以及复合在TiO2中空管上的Co9S8纳米片。该复合材料具有卓越的析氢性能和析氧性能,同时具有低的过电位和高循环寿命等特点,是一种高效的多功能的电解水催化剂,在移动通讯、电动汽车、太阳能发电和航空航天等领域具有广阔的应用前景。
本发明公开了一种CuO-Cu2O/石墨烯纳米复合材料及其制备方法;其中本发明的CuO-Cu2O/石墨烯纳米复合材料为:CuO-Cu2O纳米球均匀分散在石墨烯表面上,且纳米球为空心结构,由CuO和Cu2O纳米晶粒混合组成;其制备方法包括:将一定量的铜盐和氧化石墨混合分散形成均匀溶液,加入适量氨水调节pH值,然后将混合溶液放入微波反应器中微波加热反应得到前驱物,最后将前驱物在惰性气氛中高温(450-700℃)煅烧1-3h,再在空气气氛中低温(150-250℃)煅烧1-2h,即可得到该CuO-Cu2O/石墨烯纳米复合材料。本发明的CuO-Cu2O/石墨烯纳米复合材料制备工艺简单、成本低、电化学性能好,可应用于锂电池电极。
本发明涉及一种用于筒子纱染色管的耐高温聚丙烯复合材料及其制备方法,属于材料技术领域。一种用于筒子纱染色管的耐高温聚丙烯复合材料,所述复合材料包括如下组分及重量百分比:聚丙烯树脂40-60wt%;乙烯-丙烯共聚物10-20wt%;无碱玻璃纤维10-30wt%;矿物纤维3-10wt%;滑石粉0.5-3wt%;相容剂3-5wt%;耐热改性剂1-5wt%;抗氧剂0.5-1wt%。本发明聚丙烯复合材料通过复配聚丙烯树脂和乙烯-丙烯共聚物、无碱玻璃纤维和矿物纤维、滑石粉和耐热改性剂,各物料之间的相容性好,制成筒子纱染色管不仅成本低,且具有优良的物理机械性能,尤其具有较好的耐高温、耐高压、耐腐蚀性能。
中冶有色为您提供最新的浙江有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!