本发明属于高分子材料及其制备方法技术领域,为解决聚丙烯发泡材料强度及韧性不高、易燃烧及燃烧速度快的技术问题,提供了一种无卤阻燃聚丙烯微发泡复合材料及其制备方法,一种无卤阻燃聚丙烯微发泡复合材料,由下述重量份数配比组成:聚丙烯树脂100份,无卤复合阻燃剂24~36份,改性剂1~5份,发泡母粒2~8份,复合抗氧剂0.06~0.13份。本发明采用阻燃剂协同复配技术可提高聚丙烯微发泡复合材料的阻燃性能和耐高温性能,同时采用经过硅烷偶联剂处理过的多壁碳纳米管,有效地提高了熔体强度,获得了泡孔细小,均匀致密、良好力学性能的环保阻燃聚丙烯微发泡复合材料。
本发明公开了一种环保型水泥基复合材料,水泥基复合材料的有效成分为高效活性组份、海砂、天然砂、超细铁芯纤维、工业过滤液、水、超塑造化剂。高效活性组份包括:水泥和高碳粉煤灰,其中两者的质量比为:水泥∶高碳粉煤灰=1∶0.2~1∶1.3。活性组份包括石灰,水泥、高碳粉煤灰。所述超塑造化剂为二氢喹啉和磷酸二氢铵中的一种。所述的工业过滤液为冶金废水和煤渣废水中的一种。所述环保型水泥基复合材料中的天然砂由天然细砂和磨细石英粉组成。本发明的特征在于变废为宝,在目前提倡绿色环保、节能减排、低碳生活的国际大环境下,利用海砂生产出低成本、低能耗、绿色环保的高性能水泥基复合材料。
本发明公开了一种聚酰亚胺‑氟聚合物绝缘复合材料的制备方法、制备方法及其应用,方法包括以下步骤:1)将聚酰亚胺膜表面经电晕工艺处理后,涂覆氟聚合物乳液,经高温干燥、烧结后制成氟聚合物粘结层;2)将步骤1)形成的复合材料的表面通过双金属辊热压复合氟聚合物绝缘外层,制备得复合结构的聚酰亚胺‑氟聚合物绝缘复合材料,复合材料包括:聚酰亚胺绝缘基层、氟聚合物粘结层和氟聚合物绝缘外层,聚酰亚胺绝缘基层的至少一侧表面通过氟聚合物粘结层与氟聚合物绝缘外层连接。通过上述方式,本发明能够集优异的耐热性能、机械性能、电气性能、防水、防油、耐刮擦、耐化学腐蚀等特性于一体,制备实施的复合体系粘接性强。
本发明涉及一种非金属量子点镁锂合金基复合材料的制备方法,包括如下步骤:(1)准备两块镁锂合金板材并进行表面处理,分别得到第一板材和第二板材;在第一板材料的表面喷涂非金属量子点溶液,待其表面干燥后,可选择性地重复多次喷涂与干燥的过程;将第二板材与第一板材的喷涂面进行贴合,得到第三板材;(2)对第三板材依次进行多道次搅拌摩擦加工、多道次轧制,然后剪切得到大小相同的第四板材和第五板材;(3)重复步骤(1)~步骤(2)的处理多次后,最终得到非金属量子点镁锂合金基复合材料。本发明方法能够实现非金属量子点在镁锂基复合材料中的均匀分布,同时在基体中得到纳米晶,从而显著提高镁锂基复合材料的强度。
本发明涉及石墨烯的技术领域,尤其涉及一种石墨烯气凝胶复合材料制备方法。一种石墨烯气凝胶复合材料制备方法,该制备方法包括第一步、石墨烯粉体的CVD生长,第二步、溶胶状石墨烯复合材料合成,第三步、石墨烯气凝胶复合材料成型,第四步、常压干燥。这种制备方法制备的石墨烯气凝胶不仅密度低、结构完整,而且成型工艺简易,成本低廉,易于批量化生产。
本发明涉及一种片状过渡金属氧化物/纳米炭片复合材料的制备方法。将碳源,金属源,中性盐按一定比例混合加热、炭化、氧化处理得到该复合材料。所得材料中纳米炭片宽度为0.01?20μm,厚度为30?300nm,片状过渡金属氧化物宽度为50?250nm,厚度为10?30nm。上述制备工艺方法,所得结构新颖;将其用于锂离子电池负极材料时,表现出优越的循环性能和倍率性能。
本发明涉及过渡车钩的技术领域,尤其涉及一种优化复合材料过渡车钩铺层中固化变形方法及其使用系统。该设计方法包括:S1、获取复合材料过渡车钩的三维模型;S2、采用拉丁超立方抽样生成具有不同铺层角度参数的样本;S3、根据每个不同的样本,进行仿真计算;S4、根据每个不同样本计算结果,确定一组接近最优解的铺层角度参数;S5、根据所得到的接近最优解的铺层角度参数,采用NSGA‑Ⅱ优化算法确定最优的铺层角度参数。这种优化复合材料过渡车钩铺层中固化变形方法及其使用系统能够使得复合材料过渡车钩既有很高的承载能力,又有很好的成型质量。
本发明涉及复合材料制备技术领域,尤其是一种玻纤增强聚碳酸酯复合材料,其组分包括:48-90%聚碳酸酯、1-40%玻璃纤维、0.5-10%马来酸酐接枝聚乙烯、0.01-2%抗氧化剂。本发明的玻纤增强聚碳酸酯复合材料以马来酸酐接枝聚乙烯为增韧剂,所得复合材料抗冲击性能较好,有利于降低生产成本,提高生产效率,本发明的制备方法简单环保,适合规模化生产。
本发明属于电池箱体技术领域,尤其涉及一种复合材料电池箱体,包括:蒙皮结构,围设成容纳蓄电池的腔体结构,腔体结构至少一端为供蓄电池进入的敞口;支撑框架,包括并列设置的若干支撑结构,支撑结构对蒙皮结构内壁进行支撑;门体,设置于敞口处,用于对敞口进行封闭;其中,蒙皮结构、支撑结构和门体均为复合材料结构。本发明中,通过复合材料结构对金属材质的电池箱体进行替换,有效的降低了结构的重量,在使用过程中,整体结构通过支撑结构的设置获得稳定的容纳空间,而蒙皮结构和门体的设置使得整个空间获得有效的封闭,形成可供蓄电池稳定工作的独立空间。同时,本发明中还请求保护一种复合材料电池箱体的制造方法。
本发明公开了一种复合材料加热板及其制备方法,其中复合材料加热板,包括多个加热板单元,每个加热板单元包括芯材和覆盖在芯材上表面或/和下表面的加热面层;加热面层包括碳纤维加热片,碳纤维加热片上固定设置有两个导电金属条作为接电点,碳纤维加热片上、下表面复合粘有无纺布,无纺布的外表面设置有热塑性复合材料层;所述芯材侧面设置有至少一个温度传感器,温度传感器的触头与加热面层接触。设置温度传感器可以精确测量加热面层的温度,便于精确控制。所述无纺布、热塑性复合材料层均为非金属材料,不存在漏电的问题,安全性能好。通过设置加热板单元,模块化生产,且便于拆装、维修,成本低。
本发明提供一种耐碱性铝合金复合材料,该复合材料由基材和前躯体组成,所述基材为铝合金,所述的铝合金中各元素的质量分数为Cu 3.8~4.9%、Mg 1.2~1.8%、Mn 0.30~0.90%,其余为Al。所前驱体为Ni60Nb20Ti12.5Hf7.5金属玻璃合金包覆的碳酸钙CaCO3颗粒,所述前躯体占基材质量百分比的20~30%,前躯体的粒径为50~100μm。制备方法包括以下步骤:制备前驱体、制备基材、制备铸坯、挤压成型、固溶、时效处理。
本发明公开了一种耐高温聚乙烯纤维橡胶复合材料的制备方法,属于复合材料领域。本发明用超高分子量聚乙烯纤维制得聚乙烯纤维半稀溶液,将其放入等离子发生装置中进行表面改性得改性聚乙烯纤维半稀溶液,将其和硅酸乙酯和无水乙醇等制得二氧化硅溶胶混合,得聚乙烯纤维二氧化硅混合液,取天然橡胶加入氧化锌、硬脂酸切刀后将聚乙烯纤维二氧化硅混合液倒入,再加入促进剂等进行混炼、烘干、粉碎得一种耐高温聚乙烯纤维橡胶复合材料,本发明利用橡胶的柔性高、高弹性和纤维刚性比较强的特点,将二者的特性有效地结合在一起,复合材料的性能优于传统的橡胶制品,不仅耐高温,而且拉伸、耐压缩性能好。
本发明涉及热塑性树脂碳纤维复合材料的制备方法,包括以下步骤,步骤一,制备溶液,得到聚醚砜溶液,步骤二,将热塑性树脂粉末加入到聚醚砜溶液中,得到悬浮溶液;步骤三,由悬浮溶液将单层或多层碳纤维织物在23℃-26℃下浸润;步骤四,将步骤三中得到的单层或多层浸渍料取出并以此通过红外灯和加热辊加热;步骤五,将步骤四中得到的产物用压辊压制成单层结构;步骤六,将步骤五中得到的单层结构通过冷却辊冷却至室温并由收卷辊收卷,得到单层热塑性树脂碳纤维复合材料;本发明操作简单,成本低,得到的热塑性树脂碳纤维复合材料的热塑性树脂分布均匀,热塑性树脂碳纤维复合材料质量好,制备过程低毒环保。
本发明公开了一种近红外多波段光电响应上转换@MoS2复合材料及其应用,该复合材料具备核壳结构,其中上转换微米棒材料为核,MoS2为壳,所述上转换微米棒材料为NaYF4,所述上转换微米棒材料中掺杂有一种或几种稀土金属离子,其中稀土金属离子在所述复合材料中的摩尔百分含量占比为0.1~90mol%。本发明所述的上转换@MoS2复合材料中的上转换微米棒材料对950~1600nm范围内的近红外光具有较强的吸收能力,解决了MoS2对近红外光响应弱的问题。
本发明公开了一种聚合物基碳纤维复合材料的高压水罐成形装置及方法。该装置包括高压水罐、控制系统、硅橡胶容器、超声发射器、数控伺服机构、真空袋、抽气管、热电偶信号线、热电偶、真空泵和高压气体增压泵。该方法包括:将装有毛坯的真空袋置于硅橡胶容器内并定位,向硅橡胶容器中注满经过去气处理的超声吸收液体并密封,将密封后的硅橡胶容器放入高压水罐中并关闭,同时注入去离子水,通过主控电路控制超声发射器扫描照射到超声吸收液体,从而使聚合物基碳纤维复合材料毛坯在该温度和压力下固化成形。本发明的方法具有相对独立的高温高压环境,结构简单、热效率高、能耗低。
本实用新型提供一种复合材料襟翼,包括上壁板、下壁板、内端肋、外端肋以及支撑梁;其中,所述上壁板、所述下壁板、所述内端肋以及所述外端肋共同围合构成襟翼内腔;所述支撑梁设置于所述襟翼内腔内;所述上壁板、所述下壁板、所述内端肋、所述外端肋以及所述支撑梁的材质均为复合材料。本实用新型提供的复合材料襟翼,利用复合材料比重小、比强度高、比模量高以及各向异性、可设计性强的特性,通过选用复合材料作为襟翼的材质,使得该复合材料襟翼在满足刚度强度需求的同时,最大程度的实现襟翼的减重目标,从而提高燃油经济性。
本发明属于纳米材料制备技术领域,具体涉及一种ZnO/CNF复合材料的制备方法和应用。所述ZnO/CNF复合材料的制备方法,包括如下:(1)聚乙烯醇溶于水,形成聚乙烯醇水溶液;(2)搅拌条件下,将可溶性锌盐加入所述聚乙烯醇水溶液中,得到纺丝溶液;(3)将所述纺丝溶液进行静电纺丝,干燥,制得ZnO/CNF前驱体纳米纤维;(4)将所述ZnO/CNF前驱体纳米纤维,在N2的条件下,进行煅烧,制得ZnO/CNF复合材料。本发明方法制备的ZnO/CNF复合材料复合性能好,ZnO能够均匀负载在CNF上,纤维粗细均匀稳定性好,且具有优异的光催化降解效率。
本发明涉及医用复合材料技术领域,尤其涉及一种高强度医用纤维复合材料的制备方法。海藻酸钠水凝胶的机械性能较差,刚度和强度较低,外力作用下容易碎裂,所以在单独使用时往往难以满足实际应用要求。为了解决上述问题,本发明提供一种高强度医用纤维复合材料,包括海藻酸钠水凝胶基质和纤维骨架,所述纤维骨架完全嵌入海藻酸钠水凝胶基质中,所述纤维骨架由支撑层纤维和增强层纤维复合而成,增强层纤维位于支撑层纤维的上方,增强层纤维与支撑层纤维相互正交。本发明所制备的高强度医用纤维复合材料的刚度提高了3‑4个数量级,拉伸强度提高了2‑3个数量级,具备良好的生物相容性和安全性,具有良好的应用前景。
本发明涉及一种增强增韧聚丙烯复合材料及其制备方法,采用纳米碳酸钙母粒、碳纳米管/石墨烯母粒、PA6树脂作为增强增韧填充物,马来酸酐接枝聚烯烃共聚物为相容剂,通过纳米碳酸钙、碳纳米管/石墨烯、PA6树脂多种材料间的协同增强增韧作用,对PP复合材料的强度、韧性均有显著提高,克服了单一无机填料填充聚丙烯复合材料由于其强度和韧性方面不足的问题,拓宽了聚丙烯复合材料的应用范围。
本申请涉及一种用于挤出式增材制造的复合材料,其包含聚乳酸或聚乳酸共聚物;相对于聚乳酸重量为5‑100%的淀粉;相对于聚乳酸重量为0.1‑5%的结晶成核剂。该材料具备较快的结晶速率,可以进行快速的结晶热处理工艺,实现复合材料较高的结晶度,从而使得打印材料具备优异的耐热性,能有效提高其打印性能。该复合材料解决了非结晶聚乳酸在挤出式增材制造中过早软化、堵塞打印头的问题,同时优化了聚乳酸打印材料结晶热处理工艺。本申请还涉及该复合材料的制备方法。
本发明涉及轨道交通技术领域,尤其涉及一种复合材料蓄电池小车,包括托盘和滑轮组件;托盘包括开口向上的容纳腔,用于放置蓄电池;滑轮组件包括滑轮支撑结构、与滑轮支撑结构转动连接的轮体,滑轮支撑结构局部或全部位于托盘外侧,用于为轮体提供安装位置,滑轮组件滚动设置在蓄电池箱内的导轨上;托盘、滑轮支撑结构均为复合材料结构。通过将蓄电池小车的材料由金属材质改进为复合材料,实现了蓄电池小车的轻量化,托盘容纳腔的设置为蓄电池组提供稳定的支撑,滑轮支撑结构的设置为轮体提供稳定的安装结构。同时,本发明中还请求保护一种复合材料蓄电池小车的制造方法,具有同样的技术效果。
本发明属于纳米复合材料与环境材料制备及其降解环境污染物的技术领域,涉及一种Co‑MIL‑53(Fe)‑NH2/UIO‑66‑NH2复合材料及其制备和应用。通过原位法将八面体UiO‑66‑NH2和Co‑MIL‑53(Fe)‑NH2结合,成功制备了Co‑MIL‑53(Fe)‑NH2/UIO‑66‑NH2复合材料,用于吸附和可见光(λ≥420nm)下降解抗生素四环素,复合材料中Co‑MIL‑53(Fe)‑NH2与UiO‑66‑NH2质量比为7:3的具有最高效的吸附和光催化协同降解能力(Co‑MIL‑53(Fe)‑NH2为45%,UiO‑66‑NH2为53%)。
本发明公开了一种轴类汽车复合材料模压成形件对基准孔的位置公差测量方法,包括:设一传感器测量组件和一激光测量组件;在基准孔内表面一端设一长方体基准座;分别设置基准激光器和待测PSD传感器阵列;分别获得传感器测量组件中的四个球体在基准孔以及激光测量组件中的四个球体在轴类汽车复合材料模压成形件的若干空间位置数据,最后数据处理即可获得轴类汽车复合材料模压成形件的轴线对基准孔的轴线的位置公差。本发明的轴类汽车复合材料模压成形件对基准孔的位置公差测量方法简单且易于掌握,测量效率较高,测量精度较准,而且测量装置相对结构简单,操作简易,价格低廉。
本发明提供一种复合材料母接头成型模具,涉及模具技术领域。复合材料母接头成型模具,包括:浇注模具,浇注模具包括壳体模具和芯模;硅胶模,硅胶模通过浇注模具浇注制成,硅胶模包括多个块模;阳模,阳模由金属制成,阳模包括成型组件和脱模组件,成型组件与脱模组件可拆卸连接;多个块模和阳模围合成用于容纳预浸料的成型空间,壳体模具用于在成型空间形成后固定硅胶模。复合材料母接头成型模具结合硅胶热膨胀系数高和金属模具尺寸精度高的优势,能够制作高尺寸精度和高性能的复合材料母接头,还能够减小操作的难度,模具结构简单而可靠。
本发明属于增强材料技术领域,涉及纤维连续增强预成型复合材料结构。该复合材料结构包括连续纤维层、短切玻璃纤维层和纤维织物层;所述连续纤维层、短切玻璃纤维层和纤维织物层从上到下依次排列,所述连续纤维层上表面具有上膜,纤维织物层下表面具有下膜;所述连续纤维层与上膜间设有上树脂填充层,所述纤维织物层与下膜间设有下树脂填充层;各相邻的层之间直接接触。该种半成品增强预成型复合材料结构可以适用于各种加工工艺以得到各种形状和结构的高性能、高尺寸精度复合材料制品,制品尺寸精度高,力学性能优异,产品使用寿命长。
本发明涉及一种光固化快速制备纤维增强树脂基复合材料的方法,属于纤维增强树脂基复合材料技术领域。该紫外光固化树脂组合物的配方中各原料组成及组分重量份如下:环氧树脂90-110份,阳离子光引发剂0.1-0.7份,光敏剂0-1份,活性稀释剂0-35份,添加剂0-30份。本发明的紫外光固化树脂组合物在紫外光辐照下,引发阳离子聚合反应,然后将其迅速注入已经铺放好碳纤维增强材料的模具中,进行固化反应,脱模可得到纤维增强树脂基复合材料制品。本发明可以解决RTM成型工艺中能耗高、耗时较长的劣势。以该组合物为基体相的纤维增强树脂基复合材料抗拉强度好,固化不受纤维铺设层数及增强纤维透光性能的影响。
本实用新型属于加工设备领域,具体涉及一种碳纤维复合材料加工用切削装置。该切削装置包括刀具,所述的的刀具采用CVD金刚石制成,刀具外部设置有防护罩,防护罩上设置有一个排气孔和两个通风孔,所述的空气泵一端与排气孔相连,另一端与主轴相连,空气泵为一成套设备,具有三通切换功能,所述的主轴一端与空气泵连接,另一端与刀具连接,所述的刀具下端设置有通孔。本实用新型提出一种碳纤维复合材料加工用切削装置,防护罩与碳纤维复合材料产品表面形成相对封闭的空腔,切削粉尘不飞溅,保护环境,不危害人体健康,通过排气孔与通孔配合使用,带走切削时热量以及切削粉尘,保证碳纤维复合材料产品加工后表面平整,精度高,提高产品质量。
本实用新型属于支架平台技术领域,一种复合材料多层支架平台结构,包括若干立柱和若干层地板,所述的地板长度方向两侧设置有主梁,所述地板宽度方向两侧设置有次梁,所述主梁和次梁安装在立柱之间,从而将所述地板设置在立柱之间;所述的立柱、主梁和次梁均为层合结构,且由内至外依次包括内层—内芯方钢管、中间层—木材和外层—纤维增强树脂基复合材料;所述的地板为纤维增强树脂基复合材料模塑格栅板。1、轻质高强,2、强耐腐蚀,耐久性,耐疲劳性能优异,3、结构新颖,4、配套工程量下降,5、安全性增加,复合材料支架具有优良的电绝缘性,可避免金属材质漏电等危险;同时,平台支架较钢材自重大幅下降,地震破坏小,结构抗震能力大大提升。
中冶有色为您提供最新的江苏常州有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!