本发明属于催化剂制备技术领域,特别涉及适用于小型化装置天然气转化制合成气的转化催化剂,具体为一种低成本天然气转化催化剂及制备方法。该催化剂的制备方法为:将菱镁矿焙烧后与高岭土混合,球磨成细粉,加入蒸馏水,真空捏合后,挤条得到载体前驱体,经干燥、焙烧后得到催化剂载体。载体在镍和助剂的硝酸盐混合溶液中经过三次浸渍、分解得到成品。本发明以菱镁矿、高岭土为原料制备催化剂,制备方法简单,成本显著降低,适用于小型化制氢天然气转化领域,适用大规模工业化应用。
本发明公开了一种联合碎磨系统,特别是一种用于选矿工艺领域的联合碎磨系统。本发明提供了一种系统生产能力高、功耗小、效率高、占地面积少,可靠性高的联合碎磨系统。包括细碎装置和磨矿装置,所述细碎装置为高压辊磨机、所述磨矿装置为卧式辊磨机,所述高压辊磨机的物料输出端与卧式辊磨机的物料输入端连接。高压辊磨机和卧式辊磨两种设备利用料床挤压,与传统圆锥破碎机和球磨机相比处理量更大,更加节能。将高压辊磨机与卧式辊磨有机组合成联合碎磨系统,通过高压辊磨机将物料破碎到-3mm占80%以上,降低入磨粒度,同时在破碎产物内部存在许多微观或宏观裂纹,进入到卧式辊磨后,能够很容易的被磨细,从而达到提高效能,降低能耗的目的。
本发明提供一种以(Zn1-xCox)2SiO4,0.05≤x≤0.1为主晶相组成的低成本低介低损耗LTCC微波陶瓷材料及其制备方法。该陶瓷材料在硅锌矿结构的Zn2SiO4基础上进行了适量Co2+的替代,采用LBSCA玻璃助烧降低烧结温度,可实现900℃低温烧结,制备得该微波陶瓷材料介电常数εr为6.1~6.6,具有极低微波损耗、品质因数Q×f值均在30000GHz以上、最高可达到56939GHz,谐振频率温度系数τf约为-55ppm/℃;其制备方法以Co2O3、ZnO、SiO2原料,依次进行称料、一次球磨、烘料、预烧、掺杂、二次球磨、烘料、造粒、成型、烧结工艺;生产原料便宜、生产成本低、制备工艺简单。该微波陶瓷材料在作为LTCC微波介质基板或器件材料时,可以显著降低微波器件或模块的损耗。
本发明涉及一种Sm3+和NaNbO3共同修饰钛酸铋钠基铁电陶瓷材料及其制备方法,陶瓷材料的组分及含量为:1‑x(0.85Bi0.5Na0.5TiO3‑0.15Ba0.94Sm0.06TiO3)‑xNaNbO3,其中0≤x≤0.16。本发明的制备步骤包括:配料球磨、干燥、预烧、二次球磨、制片、烧结。本发明通过Sm3+和NaNbO3共同掺杂入0.85Bi0.5Na0.5TiO3‑0.15BaTiO3基体中,得到均一的钙钛矿结构的铁电陶瓷,并且在提高了其击穿强度的同时降低了剩余极化值,提高储能密度及稳定性,本发明方法制得的储能陶瓷能够在较高的击穿场强(100kV/cm)下获得1.207J/cm 3的高储能密度和79.19%的高能量效率,这有助于高功率大容量储存电容器的开发和应用。
一种热致变红外发射率陶瓷薄片材料及其制备方法,属于功能材料技术领域。所述热致变红外发射率陶瓷薄片材料为钙钛矿结构的La1-xSrxMnO3体系陶瓷薄片材料。制备时,采用一定摩尔比的La2O3、SrCO3和MnCO3原料,混入2-羟基丙三羧酸和纯水,球磨、干燥后得到前驱体;然后700~1000℃下预烧前驱体,再次球磨、干燥后900~1450℃下烧结得到烧结粉体;然后轧制生瓷片,排胶,最后在900~1200℃下烧结得到最终产品。本发明制备的热致变红外发射率陶瓷薄片材料,其红外发射率随温度的增加而增大,能够实现室温附近的红外发射率突变,发射率最大变化范围达到0.47。同时,该材料具有可靠性高、无功耗、质量轻的优点,可以满足微小卫星的热控要求,并在红外伪装和节能技术领域拥有广阔应用前景。
本发明涉及了一种牙用氧化锆/白榴石复合烤瓷粉及其制备方法。该材料的各组分包括:SiO2为50~60%,Al2O3为10~20%,K2O为16~30%,Na2O为2~5%,ZrO2为2~15%。该材料的制备方法为:选用一级矿物钾长石粉,加入一定量的碳酸钾和纳米四方氧化锆粉体与乙醇在球磨机中混合均匀,经干燥得到原料粉;把原料粉放在刚玉坩埚中于1000~1300℃煅烧,保温时间为30~90min,自然冷却,球磨粉碎后即得到粒径为10~30μm的氧化锆/白榴石复合烤瓷粉。这种烤瓷粉中氧化锆和白榴石晶相分布均匀,其热膨胀系数为(12~16)×10-6/K,抗弯强度为90~130MPa,且具有遮色性能好,断裂韧性高等特点,为口腔烤瓷修复的临床应用打下基础。
本发明提出一种机械复合免烧制备锂电池硅碳负极的方法及其产品,其将硅粉、碳粉球磨后与SBR丁苯胶乳、硅酸盐矿物、导电填料等原料混合球磨,形成浆状体混合物后再与表面活性剂混合,形成包覆硅碳混合粉末的复合浆料,导电泡沫塑料充分浸润复合浆料,最后复合浆料在室温固化后形成具有泡沫结构的载体负载硅/碳负极极片。该方法能够在常温下固化,制备工艺简单而且能够对硅碳负极材料形成物理限域,提高硅/碳粉末的复合能力。另外在复合浆料中掺入一定量的丁苯胶乳,能够使活性材料、导电剂均匀地嵌入到泡沫塑料内部,充分、有效地形成导电通道,并且负极材料比表面积大,电解液能与负极材料形成充分浸润,电池的循环性能得到有效提高。
本发明公开了一种耐高温热采水泥及其制备方法,该热采水泥由以下组分组成:55-65重量份铝酸盐水泥熟料,10-30重量份磷矿渣,10-30重量份矿渣,1-3重量份陶瓷纤维,1-3重量份橡胶粉。其制备方法如下:称取铝酸盐水泥熟料、磷矿渣、矿渣进行混合,然后倒入球磨机研磨,待混合粉体研磨到勃氏比表面积250-300m2/kg,加入陶瓷纤维和橡胶粉,混拌10分钟后,即得耐高温热采水泥。该热采水泥工程性能易调、低温下强度高且具有优异的耐高温性能,其形成的水泥石高温后强度不衰退、渗透率不增加且具有一定的韧性,能够满足稠油热采井固井的要求,其制备方法原理可靠,操作简便,生产成本低。
本发明涉及锂辉石生产碳酸锂、氢氧化锂、氯化锂的生产方法,针对锂辉石精矿在煅烧转型技术的缺点,本发明提供一种锂辉石精矿流化动态煅烧转型的新方法:将来自于选矿厂的锂辉石精矿,进行干燥,再磨至粒度为-250目至-350目,用流化动态煅烧炉将上述精矿进行高温煅烧转型,物料温度控制在900-1200℃,由于炉内物料呈流态化与热空气以气流输送形式传热和输送,该过程换热速率快,效率高,煅烧时间短,克服了现有煅烧技术中物料易出现烧结的技术缺点,省去了冷却、球磨工序。煅烧物料经浸出、净化、过滤等工序处理后,得到的滤液(原料液)采用现有的不同工艺,可生产碳酸锂、氢氧化锂、氯化锂等产品。
本发明涉及建筑材料领域内的一种远红外抗菌陶瓷的制备方法,是将钒钛废渣、氟碳铈矿、磷铈镧矿、磷钇矿、岷江粘土、石英岩、方解石、海泡石、高岭石和石灰岩按配方配料,加入泥浆助溶剂进行湿法球磨处理,得到浆料,浆料经喷雾造粒、干压成型、脱模、干燥后,烧成而得远红外抗菌陶瓷产品;其中配方以质量百分数计为:钒钛废渣20~50%,氟碳铈矿3~5%,磷铈镧矿2~4%,磷钇矿2~6%,岷江粘土10~30%,石英岩15~45%,方解石5~15%,海泡石2~6%,高岭石2~10%,石灰岩4~8%。本发明提供的制备方法制备的远红外抗菌陶瓷远红外发射率高,灭菌效果好,陶瓷的强度高,成本低。
本发明涉及一种3D常温打印糊状材料及其制备方法,属于3D打印技术领域。本发明解决的技术问题是提供一种3D常温打印糊状材料的制备方法。该方法在低温条件下将矿渣微粉及环氧树脂、环氧丙烷丁基醚通过行星式球磨机球磨,再加入聚合物粉末及纯碱溶液、少量减水剂,制成糊状3D打印用聚合物/矿渣微粉成型材料。在打印时糊状成型材料的固化依赖于自身的常温固化反应,不需要采用激光或紫外光层层固化,工艺简单。且矿渣微粉本身优异的潜在水硬活性性能,由喷头喷射在平台上便迅速在纯碱溶液作用下固化反应,凝固速度快,常温下即可实现打印,且打印制品的精度得以提升。
本发明公开了一种低密度碳化硅基复相陶粒支撑剂,该支撑剂以石英粉和废矿物油为原料烧制而成,具有碳化硅晶体结构;废矿物油中包含质量百分比20~50%的轻质油、20%以上的高碳重质油。支撑剂的制备方法步骤:以经过预处理后的废矿物油和石英粉为原料,添加无水乙醇和氧化硼,混合球磨;待无水乙醇挥发后,将球磨后的物料烘干,再研磨成粉体进行造粒成球,得到支撑剂素坯;将支撑剂素坯干燥后于真空条件下进行烧结,得到低密度碳化硅基复相陶粒支撑剂。与常规陶粒支撑剂相比,本发明制得的支撑剂具有高强度低密度的性能特征,且以废矿物油为原料,有利于废矿物油回收处理。
本发明公开了一种天然气汽车尾气净化催化剂及其制备方法。制备方法包括:La0.67Fe0.83Cu0.17O3钙钛矿的制备,Pd/Al2O3材料的制备,整体式催化剂的制备;催化剂成分包含Pd/Al2O3催化剂和钙钛矿以10~3:1的比例球磨混合,钙钛矿通过溶胶凝胶法制得,主要成为La0.67Fe0.83Cu0.17O3。在理论空燃比条件1000ppm CH4、5000ppm CO、930ppm NO、4035ppmO2、10vol.%CO2,5vol.%H2O、N2作为平衡气,空速为54000h‑1进行活性测试,在300~500℃程序升温过程中,发现尾气中氨的含量一直维持在10ppm以下。本发明方法制备的催化剂可以减少天然气汽车尾气中氨的含量,同时显著降低尾气中其他有害成分甲烷、一氧化碳、氮氧化合物的含量。
一种低介低损耗LTCC微波陶瓷材料及其制备方法,该材料为包含两相的复合陶瓷,主晶相为四方相白钨矿CaWO4,辅助相为三方晶系硅铍石结构Li2WO4,其配方分子式为(1-x)CaWO4-xLi2WO4。其制备方法为以CaCO3,WO3,Li2CO3为初始原料,按照(1-x)CaWO4-xLi2WO4配方分子式中各元素的摩尔比例折算出CaCO3,WO3和Li2CO3的质量百分比,进行称料、一次球磨、烘料、预烧、二次球磨;烘料、造粒、成型、烧结等一系列工序得到低介低损耗微波陶瓷材料。
本发明公开了一种可提高脱硫渣粉品位的脱硫渣粉处理方法及一种有利于烧结生产的脱硫渣再利用方法。该脱硫渣粉处理方法是将脱硫渣粉球磨后进行磁选。该脱硫渣再利用方法包括对脱硫渣进行破碎,再磁选选出大块的渣铁,剩下的为脱硫渣粉,将脱硫渣粉球磨后进行磁选,所得高铁料配入烧结料。针对脱硫渣粉品位低且不稳定的特点,采取一种先进行球磨然后进行磁选的方法,使脱硫渣粉中铁、渣有效分离,从而提高脱硫渣粉的含铁品位,实现了把低品位的废物料变为一种高品位的优质含铁原料,即高铁料,经上述处理后所得高铁料再配入烧结,有利于烧结生产。尤其适合于钒钛磁铁矿的脱硫渣处理时应用。
本发明公开了一种回收钼废料碱法处理工艺,包括以下步骤:1)球磨:将钼废料加入液碱进行球磨,得到球磨矿浆;2)预热:将球磨矿浆加热,得到预热矿浆;3)压煮:将预热矿浆泵入压煮器,通入氧气进行反应,得到料浆;4)压滤:对料浆进行压滤;滤渣洗涤吹气,待取样检测合格后卸渣;滤液进入离子交换系统生产ADM。本发明的回收钼废料碱法处理工艺对设备要求不高,操作条件容易控制,作业环境安全,对环境友好。
本发明提供一种铁酸镧/镍酸镧系燃料电池膜电极材料及其制备方法,将固相烧结的钇掺杂氧化锆材料与镧系硝酸盐和铁源、含Sr助剂混合球磨,含Sr助剂中包含少量锶类氧化物,形成YSZ‑La1‑xSrxFeO3类材料前驱体浆料。之后将球磨后的浆体均匀涂覆在镍酸盐基阵列上,经过预烧,烧结,保温,剥离基底等工序,制备得到镧系铁酸盐/镍酸盐复合阴极材料。制备的膜电极材料结构为镧系铁酸盐包覆YSZ材料形成钙钛矿网状结构骨架,镍酸盐与La系复合为钙钛矿网格填充材料,合成一种双钙钛矿结构复合的阴极材料。可以在保持镍酸盐的高质子迁移率和电子迁移率的同时防止与YSZ电解质发生反应,同时铁盐的引入可以稳定其钙钛矿结构,解决了传统LaSrFeNiO3类材料镍掺杂后引起的催化活性下降的问题。
本发明公开了一种钢渣的选别方法,其特征在于:包括以下步骤:步骤一:将钢渣进行一段球磨至钢渣粒度80~100目后进行第一次磁选,得到一次磁选精矿和尾矿,备用;步骤二:将一次磁选精矿进行脱磁处理,并将脱磁后的一次磁选精矿进行二段球磨至粒度180~200目,将球磨后的精矿进行第二次磁选,得到二次磁选精矿和尾矿,备用;步骤三:将二次磁选精矿进行脱磁处理,然后将脱磁后的精矿进行三段球磨和多次的磁选和重选处理,得到超高纯磁铁精矿和高品位铁精矿。本发明主要用于钢渣选别超高纯磁铁精矿,属于纯物理法,在生产过程中不使用化学药剂,绿色环保;在生产成本上,是传统化学法生产超高纯磁铁精矿成本的35%,具有显著的经济效益和市场推广价值。
一种多孔金红石型二氧化钛的制备方法,以钛铁矿精矿为原料,工艺步骤依次如下:(1)球磨活化,在隔绝氧气的气氛下对钛铁矿精矿进行机械球磨活化;(2)浸出,硫酸溶液体积∶活化钛铁矿精矿质量=50∶1~100∶1,将活化钛铁矿精矿与硫酸溶液加热至80~130℃进行浸出反应,得到固相物多孔水合二氧化钛;(3)固液分离,反应完成后,将料浆冷却,然后采用真空抽滤法进行固液分离;(4)将分离出的多孔水合二氧化钛洗涤、干燥,获微孔或微孔与介孔混合的多孔金红石型二氧化钛。(5)将干燥后的微孔与介孔混合的多孔金红石型二氧化钛在500~600℃煅烧2~4小时,获介孔金红石型二氧化钛。
提出一种低成本钙钛矿量子点显示材料,结构上由球形内核芯和表面壳层组成,表面壳层为硫化锌,内核的结构式为(BizSn1‑z)X4,其中,BizSn1‑z和X构成配位八面体结构,X为Cl、Br、I中的任何一种。采用固相合成方式制备内核,然后通过均质反应和复分解反应,在内核生成硫化锌并形成包覆层,最后经过滤、冷却结晶、离心分离,制得低成本量子点显示材料。通过温度和材料配比的调控,荧光量子产率达到72%;通过组分调控策略,实现了量子点的发光波长从345nm至710nm范围连续可调。
本发明公开了一种理论与实验结合的钙钛矿材料晶体结构优选方法,该方法为:首先,参照MAPbBr3结构,采用CALYPSO方法寻找到MAPbBr3‑x(BF4)x稳定的晶体结构,然后,按照寻找到的MAPbBr3‑x(BF4)x稳定晶体结构,确定PbBr2和MABF4的比例,将PbBr2粉末和MABF4粉末按照不同比例掺杂混合,制备不同结构MAPbBr3‑x(BF4)x屏蔽材料,最后,对得到的不同结构屏蔽材料进行性能评价,找到最优性能的MAPbBr3‑x(BF4)x晶体结构及屏蔽材料,此方法通过引入空间群对结构产生的限制,有效减少搜索空间自由度,增加结构种群的多样性;引入成键特征矩阵,实现对结构的指纹表征,排除相似结构,引入基于粒子群优化算法的结构演化方法高效探索势能面,大大提高了最优性能的晶体结构的优化难度,节约工作量,工作准确度大大提升。
一种矿物基相变储热复合材料及其制备方法,本发明利用了滑石粉的吸附性和离子交换功能,对滑石粉进行杂化改性处理;然后将杂化改性滑石粉进行扩层有机化改性处理,与相变储热材料进行复合,得到一种以相变储能材料为储热物质,以改性滑石粉为导热物质和支撑体的复合相变储热材料,该复合材料吸热放热速度快,性能稳定,储热量大,能反复使用,反应条件温和,易控制,原料来源广泛,适合低温储热,具有广阔的市场前景。
本发明公开了一种从攀枝花钒钛磁铁矿高炉渣中回收钒元素的方法。本发明采用攀枝花钒钛磁铁矿高炉渣为原料,利用氧化焙烧‑盐酸浸取法成功提取了高炉渣中的钒元素,通过对其工艺进行优化最终使钒的提取率高达85.94%。此外,该方法不产生废气,对环境友好。
该发明公开了一种通过填充Ga替换Sb提高CoSb3基方钴矿材料热电性能的方法,属于热电材料领域及其制备邻域。本发明的目的在于提供一种通过填充镓单质(Ga)、碲单质(Te)替换部分锑单质(Sb)形成填充替换方钴矿来提高CoSb3基方钴矿材料热电性能的方法。该热电材料可通过改变单质镓(Ga)的含量和碲单质(Te)替换锑单质(Sb)的量来调节赛贝克系数、电导率和热导率等参数来提升CoSb3基方钴矿材料的热电性能,且制备工艺简单,适合大规模生产。
本发明涉及一种以硫铁尾矿为主要原料制备高铝质耐火材料的方法。本发明制备高铝质耐火材料的原料重量百分比为:硫铁尾矿:20~82%,矾土熟料:18~80%;同时保证配合料中按重量百分比计Al2O3≥48%,Fe2O3≤3%。另加占硫铁尾矿和矾土熟料总重量0~2%(重量百分比)的粘结剂和5~8%(重量百分比)的水。原料经过干燥,熟料煅烧,配料,粉磨,混合,陈腐,成型,干燥后在1300℃~1450℃氧化气氛下烧制主晶相为莫来石、刚玉及其方石英的高铝质耐火材料。
本发明公开了一种利用低品位氧化锌矿氨法脱碳生产纳米氧化锌的方法,采用氨水-碳铵液作为浸取剂,并在每立方米浸取剂中添加入0.3-0.5kg氟硅酸钠,浸取后在每立方米浸取液中加入50-60kg熟石灰进行脱碳处理,本发明可获得纯度≥99.7%、粒径分布均匀(平均粒径为10-28nm),比表面积≥107m2/g、流动性和分散性均优的纳米氧化锌粉体;另外,本发明的处理方法能耗低、效率高,浸取剂循环利用。经过浸出处理的终浸渣,并没有破坏原有矿物成分物相组成,仍然可以制砖等达到了经济环保双重目的,具有较高的经济价值和社会价值。
一种相变储热矿物材料及其制备方法,本发明以滑石粉晶型为模板,通过多种改性工艺和处理手段,制备得到了一种相变储热矿物材料,该复合材料吸热放热速度快,性能稳定,储热量大,能反复使用,易控制,原料来源广泛,适合中温储热,具有广阔的市场前景。
该发明公开了一种CoSb3基方钴矿热电材料作为超级电容器电极材料的制备方法,并首次将该热电材料应用于超级电容器,属于超级电容器材料的合成与制备技术领域。该发明制备的应用于超级电容器的电极材料Co4Sb11.2Sn0.02Te0.78具有较大的比表面积,为电化学反应提供更多的反应活性位点同时缩短了离子传输路径,在强碱性的水性溶液中,表现出了超高的比容量和优异的倍率性能。表明CoSb3基方钴矿材料不仅具有优异的热电性能,还是一种潜在的具有优异电化学性能的超级电容器电极材料。
本发明提供了一种钒钛磁铁精矿直接提钒的方法。该方法包括的步骤有:一种从钒钛磁铁精矿直接提钒的方法,包括的步骤有:将硫酸钠加入钒钛磁铁精矿中,混合均匀后进行造球;将造球后的所得球团经高温氧化钠化焙烧;将焙烧后的球团磨成粉料,用水浸出洗涤;净化浸出液,从而使钒富集得到含钒溶液;向得到的含钒溶液中加入氯化钙沉淀钒酸钙。该方法可以使净化后的余液循环利用,避免了含氨氮废水的产生,并节约用水,减少了能耗。
本发明涉及一种以硫铁尾矿为主要原料制备半硅质耐火材料的方法。本发明制备半硅质耐火材料的原料重量百分比为:硫铁尾矿37~73%,石英砂27~63%;同时保证配合料中按重量百分比计Al2O3为15~30%,SiO2≥65%,Fe2O3≤3%。另加占硫铁尾矿和石英砂总重量0~2%(重量百分比)的粘结剂和5~8%(重量百分比)的水。原料经过干燥,配料,粉磨,混合,陈腐,成型,干燥后在1350℃~1410℃氧化气氛下烧制成主晶相为莫来石的半硅质耐火材料。
中冶有色为您提供最新的四川成都有色金属通用技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!