锂离子超级电容器的生产方法及锂离子超级电容器,将富锂化合物粉末与导电剂、粘合剂、溶剂混合制成浆料,涂覆在导电铝箔上制成锂源电极;将超级电容器的正极、负极、隔膜组装成电芯;将锂源电极放置在电芯一侧,或上、下两侧,放入封装壳内;锂源电极的极耳放置在封装壳的气袋一侧,往封装壳内注入锂盐电解液,然后热封边缘;以锂源电极为正极,电芯的负极为负极组成电对;将直流电源的正极与锂源电极连接,负极与电芯的负极连接;将所述电对充电至2.7~4.2V,维持充电电压恒压不低于1h,对电芯的负极预嵌锂;预嵌锂完成后,剪去封装壳的气袋,抽出锂源电极,然后再次封装电容器;锂源电极总容量为电芯的负极总容量的15%~50%。
一种同时测定锂矿石中锂钙含量的湿法碱熔方法,利用电感耦合等离子体发射光谱仪测定,电感耦合等离子体发射光谱仪测定用试样溶液的制备方法是:(1)称取干燥过的样品,置于坩埚中,在样品上平铺氢氧化钠;(2)给坩埚加盖,加热至样品熔融,保温,取出,冷却至熔融物凝固;(3)将坩埚和盖放入装有热水的反应器中浸提,用稀盐酸洗净坩埚和盖;(4)加浓盐酸,冷却至室温;(5)稀释;(6)干过滤,稀释,即成。本发明采用NaOH碱熔制备样品,避免使用氢氟酸和易爆品高氯酸;利用锂、钙元素易电离易激发的特点,采用电感耦合等离子体发射光谱仪(ICP‑AES)直接测定锂矿石中锂钙含量:本发明操作简单,检测范围宽。
本发明公开了一种掺硼磷酸锂包覆锂离子电池正极材料,所述正极材料是以高镍含量的层状结构氧化物为基体,所述基体的外表面包覆有掺杂硼的Li3PO4包覆层。其制备方法包括以下步骤:(1)将锂源、磷源、硼源加入高压反应釜中进行水热反应,反应完成后,冷却、洗涤、过滤、烘干,得到包覆剂;(2)按照化学计量比,称取基体材料与包覆剂混合均匀,烧结,得到掺硼磷酸锂包覆锂离子电池正极材料。发明通过在锂离子电池正极材料的磷酸锂包覆层中引入适量的硼,有效提升了其锂离子导通能力,从而使得经该包覆层包覆的正极材料表现出较好的容量和倍率性能,具有更低的DCIR增长率。
本发明提供一种正极材料前驱体、正极材料及其制备方法、锂离子电池正极、锂离子电池和用电设备。正极材料前驱体,所述正极材料前驱体的分子式为NixMnyFez(OH)2。正极材料前驱体的制备方法:将包括镍源、锰源、草酸铁铵和沉淀剂在内的原料混合制成混合溶液,反应得到所述正极材料前驱体。正极材料,其分子式为Li1+nNixMnyFezO2。正极材料的制备方法:将包括正极材料前驱体和锂源混合,然后在含氧气氛中烧结得到正极材料。锂离子电池正极,使用正极材料制得。锂离子电池,包括所述的锂离子电池正极。用电设备,包括所述的锂离子电池。本申请提供的正极材料制得的锂电池,具有优异的化学稳定性和电性能。
本发明提供了一种合成烷基锂所得锂渣的水解方法,将烷基锂过滤所得的锂渣收入锂渣缓冲罐中,然后通过锂渣计量泵将锂渣缓缓压入水解釜中,与水解釜内大量的水发生水解反应,反应温度控制在60℃以下,并通过水解釜的温度来控制锂渣的加入量;反应热通过釜体夹套冷却水带走,反应过程蒸发出来的烃类溶剂等气体则通过放空冷凝器冷却回收。该方法可防止超温、超压现象发生,且水解温度不出现大幅度波动,容易实现工业自动化控制。
本发明属于锂金属电池材料领域,具体公开了一种锂金属电池人造固体电解质界面膜,其化学式为(GaxIn(1‑x))2S3,其中,x的取值范围为0<x<1。本发明还提供了所述的SEI膜材料的化学浴制备方法以及在锂金属电池中的应用。本发明提供了一种全新化学物,且发现该化合物作为SEI膜成分,能够显著改善锂金属电池的初始容量以及循环稳定性。
本发明涉及锂离子负极材料技术领域,公开了一种柿饼状核壳结构C/ZnO锂离子负极电极片制备方法及其扣式锂离子电池。本发明以无水乙醇、乙酸锌二水、乙醇胺、葡萄糖等为原料,严格控制其水热反应的时间和温度,从而能制得柿饼状核壳结构C/ZnO材料,这种特殊形貌的柿饼状核壳结构C/ZnO极大提高了现有ZnO负极材料的导电性和稳定性,从而显著改善了其电化学性能。一方面可以降低充放电过程中体积变化造成的应力变化,另一方面柿饼状的形貌增大了比表面积,有效地改善锂离子电池的循环性能。此外,碳的存在提高了ZnO负极材料的导电性。
本发明公开了一种梯度富锂锰基前驱体及梯度富锂锰基正极材料的制备方法,配置锰离子含量不同的混合溶液A、混合溶液B以及溶液C,并且先后加入第一反应器、第二反应器和第三反应器反应,第一反应器、第二反应器和第三反应器串联循环反应,得到梯度富锂锰基前驱体。本发明的梯度富锂锰基前驱体的制备方法操作简单,可操作性强,易于控制,可用于工业生产。
本发明提供一种制备磷酸铁锂的方法及由其制得的磷酸铁锂,该方法包括以下步骤:将铁盐、磷酸盐和表面活性剂溶液分别加入缓冲溶液中,加入速度为50~150ml/分钟;调节溶液pH为1.5~3.0,在50~70℃下搅拌速度500~2000转/min,反应2~5小时,沉化15~25小时后过滤;洗涤后球磨所得沉淀,之后加入锂盐并继续球磨,喷雾干燥;保护气氛下煅烧,过筛得到成品;表面活性剂溶液浓度为0.05mol/L~0.15mol/L,加入量为所加入铁盐的摩尔量的0.8~1.2%。按此方法仅需在常温常压下反应即可制得粒径D50(占物料50%的粒子粒径)为1~2μm且粒径呈正态分布的磷酸铁锂。所得材料进一步制备电池后,压实密度可达2.2-2.3g/cm3、在10C条件下测试的电池的倍率性能仍为1C条件下测试的80%。
本发明公开了一种从废旧磷酸铁锂正极极片中制备磷酸钒铁锂的方法。包括以下步骤﹕(1)将废旧磷酸铁锂正极极片进行粉碎,筛分,分别得到铝粉A和正极回收料B;(2)添加锂源、钒源、铁源和磷源调节正极回收料B中的元素成份,混匀、干燥,获得混合料C;(3)将混合料C进行焙烧,制得磷酸钒铁锂。本发明方法制备的磷酸钒铁锂可直接作为电池材料使用。本发明通过简易的工艺流程,回收、循环利用了废旧磷酸铁锂正极极片,绿色无污染。
锂离子电池负极材料及制备锂离子电池负电极的方法,涉及锂离子电池技术领域。其中,所述锂离子电池负极材料包括活性羟基氧化钴纳米线、导电剂及胶黏剂,活性羟基氧化钴纳米线采用以下步骤制备得到:a.将钴盐溶解于去离子水,得溶液A;b.将H2O2的水溶液滴加到溶液A中,搅拌并反应完全,得溶液B;c.将溶液B转入水热反应釜内,于140℃‑200℃条件下反应5h‑48h,然后冷却到室温,得溶液C;d.将溶液C进行离心分离或者过滤;e.干燥后得到的固形物即为所述活性羟基氧化钴纳米线。该锂离子电池负极材料具有优秀的电化学性能,更适合在工业生产中推广应用。
本实用新型公开了一种便于充分受热的提锂加工用锂渣焙烧装置,包括:安装外壳,其上侧安装有封盖,且安装外壳的下侧安装有安装底座,所述安装底座的上侧安装有设置于安装外壳内的接收槽,且接收槽的下侧设置有安装于安装底座内的小加热管,所述安装底座的下端安装有伸缩架,且伸缩架的下端安装有支撑座;放置机构,其安装于安装外壳的内侧,且放置机构的下侧设置有加热机构,所述放置机构的右端安装有衔接轮,且衔接轮的上侧设置有调节杆,所述放置机构包括放置底座、放置盖、密封环和引导环。该便于充分受热的提锂加工用锂渣焙烧装置,能够使锂渣进行充分受热,确保加热效果,且能够对热气进行循环使用,减少消耗。
本发明公开了一种硫酸锂溶液净化除杂及生产碳酸锂的方法,包括以下步骤:对硫酸锂溶液依次加入硫化剂进行硫化除杂、加入吸附剂吸附除杂、通入O3进行氧化转型、再经超声加压强化转型后,进行控温蒸发得到碳酸锂沉淀。本发明采用了加压和超声强化手段强化二氧化碳与溶液中锂反应生成碳酸氢锂的效率,进而提高锂的转换率和二氧化碳的利用率;后对该溶液进行控温蒸发,通过对蒸发温度升温进行控制,不仅使碳酸氢锂转变为碳酸锂,同时降低了碳酸锂对杂质的夹带,杂质的去除率高,产物中的锂提取率高、损失量少,产品纯度高。
本发明提供一种氮磷掺杂碳复合磷化铁三维棒状多孔材料、锂电池隔膜及制备方法、锂硫电池和用电设备。氮磷掺杂碳复合磷化铁三维棒状多孔材料的制备方法:将包括铁源、含氮有机物、植酸盐和有机溶剂在内的原料混合,干燥得到前驱体;将所述前驱体进行加热处理得到所述锂硫电池隔膜用氮磷掺杂碳复合磷化铁三维棒状多孔材料。锂电池隔膜的制备方法:将氮磷掺杂碳复合磷化铁三维棒状多孔材料、粘结剂和溶剂在内的原料混合,分散得到涂层浆料;将所述涂层浆料涂覆于隔膜基材表面,得到所述锂电池隔膜。本申请提供的氮磷掺杂碳复合磷化铁三维棒状多孔材料、锂电池隔膜及制备方法、锂硫电池,能够有效解决“穿梭效应”,提升锂硫电池电化学性能。
本发明公开了一种采用硫酸锂粗矿制备电池级碳酸锂并回收副产物的方法,包括以下步骤:电池级碳酸锂的制备;石膏、水氯镁石和硼酸盐混盐的制备;芒硝的制备。在本发明中,一级浆洗采用沉锂产生的氯化锂母液和硫酸钠溶液进行浆洗,可以降低硫酸锂的损失,提高回收率;二级浆洗含碳酸锂的再循环溶液L4作为浆洗液,除去可溶性的钙镁离子的同时,回收再循环溶液中的锂;二级浆洗固液分离的滤液L5含锂,返回一级浆洗补液,溶解可溶性杂质离子的同时,降低一级浆洗的损失;二级硫酸锂精料采用制芒硝母液L6溶解,溶解过程析出NaCl混盐后沉锂;在本发明中,粗碳酸锂采用含碳酸锂的再循环溶液浆洗,减少系统外排的同时,又可以提高锂的收率。
一种锂离子电池正极材料硼酸亚铁锂的制备方法,包括以下步骤:(1)将锂源、铁源、硼源、螯合剂按照相应原子Li、Fe、B、C的摩尔比为1-1.05:1:1:0.5-1.5的比例混合,加入水中溶解,控制金属离子的浓度在0.1-0.8mol·L-1,得溶液;(2)恒温水浴中搅拌,形成溶胶;(3)恒温静置,形成凝胶;(4)往凝胶中加入水,搅拌;(5)喷雾干燥,得前驱体;(6)将前驱体在非氧化性气氛中于250-350℃烧结1.5-2.5h,然后升温至450-550℃烧结5-12h,自然冷却到室温,即得LiFeBO3。本发明所用原材料来源广泛,操作简便易行,可控性强,烧结温度低,生产成本低。
本发明提供了一种锂离子电池磷酸铁锂正极材料的回收再利用方法,包括:将退役的磷酸铁锂电池进行放电处理、破碎和浸出;将所得的浸出液进行过滤,得到滤液和滤渣;调节所得滤液的pH并加入沉淀剂,得到除杂后的溶液;向所得的溶液中加入锂源、磷源或铁源,得到混合溶液;调节所得混合溶液的pH为10~12,得到磷酸铁锂的前驱体沉淀;将所得前驱体与碳源混合后在惰性气氛下进行固相烧结,得到磷酸铁锂正极材料。本申请采用的回收方法实现了资源有效利用,简化了操作步骤,降低了成本且易大规模推广。
本发明公开了一种用于锂离子电池的CNTs(Carbon?nanotubes)掺杂氧化锡负极材料及其制备方法。本发明第一步在经过预处理的铜带基底表面一侧复合电镀CNTS掺杂锡镀层,其厚度为10~15μm,第二步是将第一步所得材料进行阳极氧化处理,得到介孔状氧化物,而后进行热处理,最终制备出了一种在铜带基底表面一侧附有碳纳米管均匀掺杂的介孔氧化锡层的锂离子电池负极材料,介孔直径为3~10nm,所得氧化物层厚度为5~10μm。本发明所制备的锂离子负极材料首次放电比容量最高可达到650mAh/g,50次循环后比容量衰减仅0.8%~5%。本发明的制备工艺简单,可进行大规模产业化生产。
本发明一种3D锂金属负极的亲锂性多孔复合碳骨架及其制备方法和应用,为具有内部连通孔结构的薄壁多孔碳骨架,所述薄壁多孔碳骨架中原位内嵌有Ni2P纳米粒子,且表面掺杂有含磷官能团。本发明得益于该亲锂性多孔复合碳骨架中的连通孔形成的腔体结构、良好的导电性和优异的亲锂性,有效地降低了锂沉积的形核过电位和局部电流密度,极大地缓解体积效应并抑制锂枝晶生长,实现均匀的锂沉积/溶解,明显提高了锂金属电池的库伦效率和循环稳定性。
本发明涉及锂离子电池领域,公开了一种锂离子电池组及其装配方法及极耳连接机构,机构包括第一壳盖、第二壳盖,第一壳盖、第二壳盖可开口相对扣合形成一壳体;在第一壳盖内固定有第一金属片,第一金属片包括第一凸起段、第一伸出段,第一凸起段位于第一壳盖内且向第二壳盖方向凸起,第一伸出段伸出在外,在第二壳盖内固定有第二金属片,第二金属片包括第二凸起段、第二伸出段,第二凸起段位于第二壳盖内且向第一壳盖方向凸起,第二伸出段伸出在外,当第一壳盖与第二壳盖相互扣合形成壳体时,第一凸起与第二凸起相紧密抵触。应用该技术方案可以有效的优化电池组的组装,返修,拆卸,提高生产效率,降低维修成本。
本发明提供了一种利用磷酸铁锂电池正负极废粉制备电池级碳酸锂和电池级磷酸铁的方法,具体为:将磷酸铁锂正负极废粉和水混合制成料浆,加热,加入无机酸、氧化剂和调整剂A,进行反应,经过滤、洗涤得到含锂溶液和磷铁渣;对含锂溶液进行深度除杂,采用得到的高浓度锂溶液作为原料制备电池级碳酸锂产品;将磷铁渣和水混合制成料浆,加热,再加入无机酸、氧化剂和调整剂B,进行反应,经过滤、洗涤得到磷铁溶液;对磷铁溶液进行深度除杂,采用得到的高纯度磷铁溶液作为原料制备电池级磷酸铁产品。该方法达到了高效综合回收利用锂、铁、磷的目标,且可操作性强,既能提高回收磷酸铁锂电池废粉的经济效益,又能解决环保难题,适于大规模化生产。
一种利用熟石灰活化压浸锂辉石提锂盐的方法,包括如下步骤:(1)晶型转化;(2)活化超磨;(3)压力浸出;(4)分离提纯。本发明采用熟石灰活化压浸工艺,实现锂辉石中锂的高效浸出,与传统工艺相比,本发明锂盐浸出率高,锂盐浸出率为92%以上,可得到纯度大于99.50%锂盐产品,浸渣中Li2O含量≤0.12%,浸出液中Si含量小于7mg/L,钙含量小于20mg/L,镁含量小于4mg/L,钠含量小于500mg/L,钾含量小于500mg/L,铁含量小于0.01mg/L。另外,本发明所用原料廉价、成本低,产渣量小、渣质量较好,可对浸渣回收利用,且工艺流程中无废水、废气、废渣排放。
本发明属于锂二次电池负极材料技术领域,具体公开了一种锂二次电池锂硼硅合金负极活性材料,其包括多孔硅骨架,以及复合在多孔硅骨架中的以合金形态存在的活性锂与Li‑B‑Si团簇。本发明还公开了所述的锂硼硅合金负极活性材料的制备方法,以及包含所述的锂硼硅合金负极活性材料负极和锂二次电池。本发明发现,所述特殊结构和成分的负极活性材料具有优异的首次可逆容量、库伦效率和循环稳定性。
一种制备锂离子电池正极材料焦磷酸铁锂的方法,包括以下步骤:以锂源化合物、铁源化合物、磷源化合物和螯合剂为原料,混合溶于水中,在室温下搅拌0.5-2h得到溶胶,然后升温到50-100℃并保持2-10h,使之形成凝胶,接着将此凝胶在真空干燥箱中以100-120℃烘干,将得到的干凝胶球磨1-4小时,研磨均匀后,再在保护气氛下于500-700℃烧结2-16小时,自然冷却到室温,即得成品焦磷酸铁锂。本发明合成的焦磷酸铁锂的颗粒均匀一致,结晶度高,颗粒的分散性好。使用本发明合成的焦磷酸铁锂制成的电池,具有较高的充放电容量和充电平台,循环寿命优良,能满足锂离子电池实际应用的各种需要。
本发明公开了一种低浓度锂离子电池电解液及其制备的锂离子电池。该低浓度锂离子电池电解液由锂盐、非水系有机溶剂和惰性共溶剂组成;其中:锂盐的浓度为0.1~0.8mol/L,非水系有机溶剂和惰性共溶剂的体积比为(20~80):(20~80)。本发明的低浓度锂离子电池电解液具有优异的抗氧化稳定性,能够与正极材料之间形成稳定的界面,从而提高锂离子电池的循环性能;而且该电解液具有独特的锂离子溶剂化结构和较低的粘度,使其与隔膜和正负极材料间均有良好的浸润性能,能够有效提高锂离子电池的倍率性能。本发明的电解液具有良好的阻燃性能,能够提高锂离子电池的安全性能,降低着火爆炸的风险;而且减少电解液中锂盐的用量,从而大幅度减少电解液和锂离子电池的成本。
本发明公开了一种可在任意海洋深度下工作的潜航器耐压新型聚合物锂电池包,包括:箱体、设于箱体内部的锂电池单元与保护板、设于箱体上部的柔性上盖与压板、设于箱体下部的截止阀;所述锂电池单元由聚合物单体锂电池、PCB转接板与支撑架组成;锂电池单元与保护板用螺钉固定在箱体所设螺柱上;保护板则通过导线与锂电池单元完成电路连接;所述柔性上盖与压板,通过螺钉和螺母固定在箱体所设法兰边上,使内部形成密闭结构。当潜航器下潜时,柔性上盖自动向内凹陷,使箱体内部预先注满的硅油被压缩而产生内压,瞬间使箱体内外压力达到动态平衡,避免箱体被压破进水。本发明具有高安全性与可靠性、低成本和使用方式灵活的特点。
本发明公开了一种石墨烯包覆硼酸铁锂制备锂离子电池正极材料的方法,它涉及锂离子电池正极材料的改性制备技术领域;制备方法为:将锂源Li,铁源,硼源B,石墨烯和聚合物反应,制得粘稠物后置于干燥箱中烘干,研磨制得前驱体粉末;前驱体粉末用水分散,于超声清洗器中超声5?20min,随后取出,抽滤,水洗后,用乙醇清洗;清洗后的前躯体粉末置于真空干燥箱中烘干;置于管式炉中的惰性气氛中,自然冷却到室温,得高性能锂离子正极材料LiFeBO3包覆石墨烯复合材料。制得的均匀石墨烯包覆的硼酸锰锂的粒径在亚微米级别,颗粒的分散性好、结晶度高,物质为纯相无杂质,具有较高的首次可逆充放电比容量,电化学性能有明显改善。
一种锂离子电池正极材料的制备方法,包括以下步骤:(1)对钛硼颗粒在氧气气氛下进行热处理;(2)将步骤(1)中经热处理后的钛硼颗粒与锂镍金属氧化物混合后得到锂离子电池正极材料;其中,所述钛硼颗粒与锂镍金属氧化物混合时,所述钛硼颗粒的含量不大于钛硼颗粒与锂镍金属氧化物总量的1.5mol%。本发明还提供一种上述制备方法制备得到的锂离子电池正极材料。本发明中本发明经热处理后的钛硼颗粒与锂镍金属氧化物混合烧结后制备得到的正极材料的性能优异,使用此正极材料生产的锂离子电池在高压下具有优异的充放电特性与高温存储特性的同时还具有优异的循环特性。
本发明涉及一种镍钴锰酸锂材料前驱体及其制备方法、以及由该前驱体制备的锂离子电池。该镍钴锰酸锂材料前驱体呈球形,一次颗粒为发射条状,其化学分子式为Ni1‑x‑yCoxMny(OH)2,其中0<x<0.2,0<y<0.2,振实密度为1.6‑1.9g/cm3,中位粒度D50为6‑18μm,平均孔径为14‑18nm。该镍钴锰酸锂材料前驱体的制备方法是在传统一步法的基础上进行改进,由该方法制备的前驱体既具备单一防氧化条件下前驱体产品的特点,又具备单一氧化条件下前驱体产品的特点;由该前驱体制备生产的三元正极材料兼具高容量、高循环性能的优点,同时还具有压实密度高、热稳定性好、自放电率低等优点。
本发明公开了一种锂锰氧化物型锂吸附剂的制备方法,包括以下步骤:(1)将锂源和锰源按照Li/Mn摩尔比为1~30∶1的比例加入含络合剂和氧化剂的水溶液中,然后于20℃~100℃的温度下恒温搅拌1h~72h,得到中间产物LiMnO2;(2)将中间产物LiMnO2在空气气氛下于300℃~1000℃焙烧1h~24h,得到前驱体Li1.6Mn1.6O4;(3)用无机酸对前驱体Li1.6Mn1.6O4进行洗脱,洗脱后经过滤、洗涤和干燥,得到锂锰氧化物型锂吸附剂H1.6Mn1.6O4。本发明的制备方法工艺流程简单、成本低廉、操作简便、且有利于实现工业化。
中冶有色为您提供最新的湖南有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!