本发明公开了一种LiAl5O8纳米线的制备方法、复合固态电解质、锂金属电池,所述LiAl5O8的制备方法包括如下步骤:对Al(EtO)3纳米线进行预煅烧,然后在保护气氛下,将预煅烧后的Al(EtO)3纳米线膜浸泡于锂离子溶液中;浸泡结束后进行固液分离,得到补充锂的Al(EtO)3纳米线;煅烧所述补充锂的Al(EtO)3纳米线,得到LiAl5O8纳米线。由本发明的LiAl5O8纳米线制得的复合固态电解质可以引导Li+以层片状而不是以枝晶状的形式沉积,能够显著改善锂金属电池的长循环稳定性和倍率性能。
本发明涉及一种锂二次电池电解液及锂二次电池,锂二次电池电解液包括有机溶剂、导电锂盐和添加剂;所述添加剂包括双草酸硼酸锂和N‑苯基双(三氟甲烷磺酰亚胺)。上述锂二次电池电解液利用无机锂盐双乙二酸硼酸锂(LiBOB)和有机物N‑苯基双(三氟甲烷磺酸亚胺)(NPBS)的协同作用,作为电解液的防腐蚀功能添加剂,含有这种功能添加剂的锂二次电池循环性能得到改善,应用前景良好。
本发明公开了一种碳包覆的富锂多元锂离子电池正极材料及其制备方法。该方法通过使用碳酸盐作为pH值调节剂制取含有Ni, Co, Mn, Li,X(X=K, Na, Mg, Cs),M(M=Fe, Al, Ti)的浆料,通过添加表面活性剂实现对物料形貌的控制,添加Al, Ti作为结构稳定剂,K、Na作为锂离子电池通道扩充剂,通过喷雾干燥的方法一步制取富锂多元材料前驱体,焙烧得到所述材料LinXmNiaCobMn1‑a‑bMcO2。本发明可有效降低制造成本,制得的材料颗粒度小,具有放电比容量高和循环稳定性好等优点。采用具有导电性的有机物衍生碳对多元富锂材料进行包覆处理,可有效提升材料的循环稳定性。
本发明属于锂硫电池的技术领域,公开了一种长循环寿命高比容量锂硫电池正极材料和锂硫电池正极及其制备。所述正极材料为:(1)在盐酸溶液的体系中,以过硫酸铵为氧化剂,将氨基苯硫酚进行聚合反应,后续处理,得到导电聚合物;(2)在惰性氛围下,将导电聚合物与硫磺混合均匀,升温至140~170℃,保温,继续升温至170~200℃,保温,冷却,研磨,干燥,得到正极材料。所述正极为将正极材料、导电剂、粘结剂以及有机溶剂混合均匀,得到浆料;将浆料均匀涂覆在集流体上,真空干燥,得到锂硫电池正极。本发明的锂硫电池正极材料和正极结构稳定,具有高容量和超长循环寿命,本发明的方法简单可行,能耗少,易于实现工业化生产。
本发明属于电池材料技术领域,具体涉及一种硫化聚丙烯腈材料及其锂硫电池正极、锂硫电池。本发明将聚丙烯腈与硫粉所形成的混合物加热形成的硫化聚丙烯腈材料,具有接近100%的库伦效率和极低的自放电率。硫化聚丙烯腈作为一种含硫正极材料,能在电解液中稳定存在并参与锂离子的循环,不存在锂硫电池的“穿梭效应”。将本发明的硫化聚丙烯腈材料用作锂硫电池正极,既可以维持锂硫电池的导电性能、缓解充放电过程中的体积膨胀,又可以改善锂硫电池的循环性能。
本申请属于锂硫电池技术领域,尤其涉及一种锂硫电池正极及其制备方法和锂硫电池。其中,锂硫电池正极包括正极浆料和集流体,所述正极浆料覆盖在集流体表面,所述正极浆料包括活性材料、导电剂、粘结剂、有机溶剂以及β‑MoTe2,β‑MoTe2提高了锂硫电池正极的氧化还原动力学,降低了锂硫电池内阻和电荷转移阻抗,并且改善了锂硫电池的循环稳定性;本申请提供的锂硫电池正极及其制备方法和锂硫电池可以解决用于化学吸附和催化转化多硫化物的催化剂种类不够多的技术问题。
本发明公开了一种电解液以及包括该电解液的锂二次电池。其中电解液包括电解液盐、有机溶剂、添加剂。所述添加剂为具有如下通式化合物中的一种。所述的化合物具有如下之一的通式:R1的化学式为CaFbHdOe;0≤a≤2,0≤b≤2,0≤d≤4,0≤e≤1。本发明还公开了一种采用该电解液的锂二次电池,采用本发明电解液的锂二次电池具有良好的高温存储和循环性能。
本发明提供一种球形磷酸锰锂正极材料的自组装制备方法,将碳纳米管与磷酸锰锂材料复合,利用碳纳米管的超高电导率改善磷酸锰锂的导电性能。该方法使用碳纳米管为晶核,原位制备由纳米磷酸锰锂颗粒自组装形成的球形磷酸锰锂颗粒,碳纳米管穿插于球形二次颗粒之间。本发明还提供包含由上述制备方法制得的自组装球形磷酸锰锂与碳纳米管复合正极材料。
本发明提供了一种锂一次电池负极结构及锂一次电池,涉及锂一次电池技术领域,所述锂一次电池负极结构包括锂负极片,所述锂负极片设置有压接区域,所述压接区域压接锂带,所述锂负极片和所述锂带之间压接有极耳,缓解了现有负极结构在放电后期,锂负极片容易发生断裂的技术问题,本发明提供的锂一次电池负极结构,通过在锂负极片上压接锂带,且极耳位于锂带和锂负极片之间,从而使得锂带与锂负极片的压接区域局部增厚,能够有效避免电池放电后期,锂负极片与极耳连接处发生断裂,从而有效提高锂一次电池的容量发挥和放电稳定性。
本发明提供了一种无酸浸提回收废旧磷酸铁锂电池中锂的方法,属于锂离子电池材料回收技术领域。本发明通过将废旧磷酸铁锂电池的正极材料加水制浆,得到磷酸铁锂浆料;将金属离子络合剂、氧化助剂与磷酸铁锂浆料混合反应、过滤,得到含锂溶液和磷酸铁渣;将碳酸盐与含锂溶液混合沉淀即得到碳酸锂产品。本发明的提锂方法不需要添加酸碱试剂,避免了环境污染及浪费水资源,通过金属离子络合剂及氧化助剂的相互配合作用,有效且精准的将锂离子析出,提锂效率高达99.8%,碳酸锂产品纯度高达98%,碳酸锂可以直接使用。
本发明属于锂二次电池材料领域,其公开了一种锂二次电池电解液,包括有机溶剂、导电锂盐、添加剂A、二氟磷酸锂、N‑苯基双(三氟甲烷磺酰)亚胺、三烯丙基异氰脲酸酯;所述添加剂A的使用质量相当于锂二次电池电解液总质量的0.1%~3.0%;所述二氟磷酸锂的使用质量相当于锂二次电池电解液总质量的0.1%~1.0%;所述N‑苯基双(三氟甲烷磺酰)亚胺相当于电解液质量的0.1%~1.0%,所述三烯丙基异氰脲酸酯相当于电解液质量的0.1%~1.0%;所述添加剂A为四乙烯基硅烷、磷酸三乙烯酯中的至少一种;该电解液通过添加剂的优化组合,达到了高温、常温、低温综合性能改善的目的。
本发明公开了一种钼酸锂表面修饰锂离子电池富镍正极材料及其制备方法。该锂离子电池富镍材料的化学式为:LiNiaCobM1-a-bO2(其中a、b为摩尔数,0.5≤a≤1,0≤b≤0.2,M为金属离子Mn、Al和Fe中的一种或几种,Li2MoOx为表面修饰层材料钼酸锂,3≤x≤4)。本发明通过简单的液相前驱体制备、表面修饰和高温固相烧结反应,制备出钼酸锂表面修饰锂离子电池富镍材料。钼酸锂表面修饰层具有很好的锂离子导电性,有利于锂离子的脱嵌。利用钼酸锂表面修饰富镍正极材料可大幅提高富镍正极材料的倍率性能、循环性能和安全性能,本发明制备方法的原材料易得,操作简单,成本低,易实现工业化大规模生产。
本发明提供一种锂离子电池电解液及其制备方法、锂离子电池。该锂离子电池电解液包括溶剂、电解质锂盐和添加剂,电解质锂盐和添加剂分散于溶剂中,添加剂为五氟苯基三乙氧基硅烷。五氟苯基三乙氧基硅烷作为添加剂,不仅能够先于电解液其他材料被氧化,并且氧化产物能够在界面形成一个更为稳定、内阻更低的膜,以抑制电解液的分解;同时五氟苯基三乙氧基硅烷还能够有效吸附副产物氟化氢及其电离形成的氢离子、氟离子,防止由该副产物腐蚀导致的活性物质剥离,保证电池的长循环稳定性。
本发明扣式锂电池的正极钢壳及扣式锂电池属于电池领域,扣式锂电池的正极钢壳是一个敞口的壳体,在正极钢壳内表面上设置具有高氧化电位的金属防腐层,高氧化电位的金属防腐层是铝箔或铝合金,其厚度为5-35μm。金属防腐层使扣式锂电池的正极钢壳在整个工作电压范围内不发生电化学腐蚀,电池的内阻和自放电显著减小,电化学性能优良。本发明可以避免电池钢壳由于高氧化电位而发生电化学腐蚀,减小电池的自放电和降低电池的内阻,是一种性能优良的扣式锂电池。
本发明公开了一种高压煅烧制备锂镍锰氧锂离子电池正极材料的方法,包括以下步骤: 将锰源化合物、镍源化合物与掺杂元素M的化合物加入水中并混合,在搅拌状态下加入沉 淀剂,将不溶物经过滤、洗涤、干燥后得到前驱体;将锂源化合物与得到的前驱体混合均 匀后移入高温炉内;向高温炉内通入气体,气压在1-10MPa,高温炉内温度控制在 600-1000℃,混合物料在高温炉内煅烧10-40小时后冷却;物料经粉碎、筛分得到化学式为 Li(Nix-yMyLi1/3-2x/3Mn2/3-x/3)O2的锂离子电池正极材料。该方法能够降低制备过程中的煅烧温 度,缩短反应时间,降低成本,制备的锂离子电池正极材料电化学性能优良。
本申请提供一种锂离子电池电解液、锂离子电池以及用电设备,属于电池制造领域。锂离子电池电解液包括有机溶剂、锂盐和添加剂,添加剂包括具有如式I所示的结构通式的联嘧啶衍生物:其中,R1~R6均独立选自氢原子、氟原子、氰基、硅烷以及C1~C6的烃基或含氟烃基中的一种,通过该锂离子电池电解液,能够在保证电池的循环性能以及安全性能的情况下,兼顾解决电池的高低温电学性能欠佳的问题。
本发明公开了一种复合固态电解质,所述复合固态电解质包括聚合物固态电解质以及无机固态电解质与无机填料中的一种或两种,所述聚合物固态电解质由式(1)结构的聚合物的均聚物、无规共聚物或嵌段共聚物中的一种或多种与锂盐混合而成;该复合固态电解质具有高离子电导率、高锂离子迁移数、高热稳定性,且机械性优异以及电化学稳定。制备出来的全固态锂电池电芯适用于‑50℃~200℃的温度范围,同时能保证优异的电化学性能和安全性能。同时,能够提升全固态锂电池电芯和全固态锂电池的使用寿命和能量密度。
本发明实施例提供了一种钝化锂粉的制备方法和金属锂负极,所述制备方法包括:对锂箔和乌洛托品进行球磨处理,得到球磨后的锂粉;对所述锂粉与全氟癸硫醇进行球磨处理,得到钝化锂粉。通过本发明实施例,实现了通过低温球磨来制备纳米级钝化锂粉,该钝化锂粉具有极低的过电位和超高的比表面积容量,可以有效地抑制或阻止锂枝晶的生长,从而使以钝化锂粉作为锂金属负极构建的全固态电池具有高度稳定的循环性能和倍率性能。
本发明属于固体废弃物综合回收利用领域,具体地说,涉及一种从含锂辉石磁性固废中回收锂辉石的方法,本发明公开了一种磁性固体废弃物回收锂辉石的方法,通过弱磁选脱除强磁性杂质矿物,再通过中、高场强磁选,脱除弱磁性杂质矿物,并对该中、高场强磁选尾矿进行浮选后得到锂辉石精矿,本发明有效解决了磁选除杂过程中夹杂锂辉石的回收问题,同时对提高我国矿产资源综合利用率、提高锂资源保障能力有深远的意义。
本发明公开了一种锂硫电池化成方法及该化成方法制备的锂硫电池,包括以下步骤:将锂硫电池注液封口后,转入化成柜进行化成,抽气,二次封口。本发明通过一个高频对称/不对称充放电化成方法,在短时间内实现高硫量锂硫电池高面载量S/C电极与电解液的浸润,并有效抑制多硫化锂的溶出,避免在抽气/二次封口过程中造成活性物质的损失,有效解决了化成后锂硫电池容量低,循环稳定性差等问题。
本发明高密度超微复合型磷酸铁锂正极材料及制备方法属于电池领域,是由铁盐化合物、锂盐化合物和磷盐化合物按摩尔比P∶LI∶FE=1-1.1∶1-1.1∶1-1.1的比例混合,再在其中加入掺杂元素化合物或含碳有机化合物作为导电添加剂,加入作为载体的有机酸,调节PH值,控制反应器中的溶液温度,形成溶胶,分离可得纳米前驱体,在惰性气体保护的气氛中,将纳米前驱体放置在微波炉中,获得最终产物,产物的化学成分、相成分和粒度分布容易控制,导电剂分布更加均匀,用微波合成大大缩短合成时间,大大降低了合成过程的能耗,价格低廉,制得的复合材料纯度高,与电解液相容性较好,导电性能和大电流充放电性能优越,该复合正极材料磷酸铁锂结构稳定,热稳定性能好,循环性能优良。
本发明公开了一种高电压锂离子电池正极材料铜掺杂锰酸锂,其特征在于其组成通式为:LiMn2-xCuxO4,其中0.1≤x≤0.5。该改性正极材料是采用溶胶凝胶法进行制备,将可溶性锂盐、可溶性锰盐和可溶性铜盐溶于去离子水中配成混合溶液,再和酸性络合剂溶液混合反应,控制反应的温度为60~90℃,用氨水调节pH值为6~8,并不断搅拌蒸干,干燥后将得到的凝胶前驱体在400~500℃下预烧1~10h,再在600~900℃下煅烧8~16h得到最终产物。本发明所提供的高电压锂离子电池正极材料铜掺杂锰酸锂粒径均匀、结构稳定,且工艺过程简单、生产成本低,制得的锂电池二次电池有优良的充放电循环性能。
本发明提供一种胶态聚合物锂离子电池的结构设计和制备方法。该胶态聚合物锂离子电池主要由四种复合元件构成:正、负电极片、聚合物/电解质/聚乙-丙烯隔膜复合体和塑料/金属箔复合膜作为软外包装。经过液相沉积工艺在正、负电极片和隔膜表面上形成聚合物粘性微粒,再经过电池芯的刚化反应与聚合物电解质的胶化反应使电池芯形成一个具有自身机械强度和刚性的整体。从而减缓或削除电极片与隔膜的脱落与分离,以及电池的充涨问题;提高电池质量和一致性。本发明胶态聚合物锂离子电池可提供更高能量密度和更安全性能。
本发明公开了一种柔性锂金属电池负极,包括集流体、亲锂性物质和锂金属,所述亲锂性物质和锂金属负载于集流体上;所述亲锂性物质为可降低所述锂的成核势垒的物质。本发明将可降低所述锂的成核势垒的物质负载在集流体上,一方面能够降低可降低锂的成核势垒,实现了锂金属与集流体的均匀复合,另一方面作为类似“铆钉”的作用,能增强锂金属与集流体的结合力,实现了柔性锂金属电极的制备。本发明还提供了所述柔性锂金属电池负极的制备方法。该方法能使亲锂性物质在柔性锂金属电池负极中发挥抑制锂枝晶生长的效果和“铆钉”的作用。本发明还公开了一种锂金属电池。本发明锂金属电池短路隐患降低,库伦效率提升,电池寿命延长。
本发明的目的是提供一种具有防过充和阻燃功能且对锂离子电池负面影响小的锂离子电池电解液。并提供了上述电解液在制备锂离子电池中的应用。所述的锂离子电池电解液中含有4-溴-2-氟苯甲醚作为添加剂,添加剂在锂离子电池电解液中所占的质量百分比为1%~10%;另外,还含有溶剂EC+DEC+DMC,并且三者的质量比为1∶1∶1。本发明的有益效果是:在锂离子电池电解液中加入了所述的添加剂,不仅能够有效地提高电解液的耐过充性能,而且还能起到很好的阻燃效果,同时对充放电的循环性能基本无影响。由含有这种添加剂的锂离子电池电解液制备的锂离子电池同样具备了这些优点,对锂离子电池正常的充放电性能影响非常小,能够满足实际应用的需要。
本发明公开了一种抑制锂枝晶生长的电解液及锂电池。所述电解液包括添加剂、锂盐和有机溶剂,所述添加剂包括六氟磷锂、高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、氟硼酸锂、六氟铝酸锂、六氟砷酸锂、氟化锂、氯化锂、溴化锂、硝酸锂、多硫化锂、氮化锂、磷化锂、二草酸硼酸锂、氧化锂、亚硫酸锂、硫酸锂、乙酸锂、氢氧化锂和草酸锂中的至少一种,所述锂盐为不同于添加剂的锂盐。含有添加剂的锂电池,在充放电过程中不仅能在锂金属负极表面形成一层固态电解质膜,而且能够诱导电解液聚合形成一种低聚物覆盖在锂负极表面以及与之相匹配的正极材料的表面。该保护层可以有效的抑制锂枝晶的生长,从而提高电池的安全性能。
本发明公开一种变温变压超声消除锂离子电池析锂的方法,将已经析锂的锂离子电池装入锂离子电池变温变压超声设备中,在设定的温度和压力下,利用电池外联式制备装置,以及微波超声波分散破碎技术,实现对锂离子电池内部气体、液体及颗粒的采样,吸除并清理电池内部气体、液体及颗粒,输入金属锂的反应物,待析出的金属锂完全消除后,排出反应物、杂质、水份等,输入溶剂、锂盐、添加剂及电解液等,并对电池进行充放电。根据锂离子电池的正负极材料及采样分析的结果,加入合适的电解液或者补充溶剂、锂盐、添加剂及部分电解液,实现对锂离子电池的修复,有效地解决锂离子电池析锂问题。
本发明属于锂离子电池技术领域,本发明具体公开了一种锂离子电池正极浆料及其制备方法和锂离子电池,所述的锂离子电池正极浆料,包括混合料、混合液,所述混合料由正极活性材料、导电剂经过球磨混合而成;所述正极活性材料由磷酸铁锂、镍钴锰酸锂、碳材料按照重量比1:0.5~2:0.1~0.5组成。由本发明所述的锂离子正极浆料制备而成的锂离子电池具有良好的倍率性能和循环性能以及能量密度,能很好的满足数码产品能量密度要求和电动工具大电流充放电要求,在本发明的配方体系中,通过使用所述由磷酸铁锂、镍钴锰酸锂、碳材料组成的三元正极活性材料能够显著提高倍率性能和循环性能。
本发明属于锂离子电池材料领域,公开了一种锂二次电池电解液,包括溶剂、锂盐和添加剂,其特征在于:所述添加剂具有如下通式一:
本发明属于锂离子电池技术领域,公开了一种用于锂离子电池负极的木质素基水性黏结剂和基于其的锂离子电池负极电极片与锂离子电池。该木质素基水性黏结剂包括以下重量份数的组分:水溶性木质素100份;丁苯橡胶20~1000份。本发明还提供了一种基于上述黏结剂的锂离子电池负极电极片及其锂离子电池。本发明木质素基水性黏结剂应用于锂离子电池负极,增加了电极材料的分散性和粘结力,有效克服活性材料的团聚,提高电极浆料在Cu箔上的涂覆均匀性,电极材料韧性好,能降低其界面阻抗,降低了负极电极片电阻,较大改善材料的高倍率性能;另一方面,本发明提供的木质素广泛来源于天然植物,绿色环保,应用于水系黏结剂能显著降低电池的成本。
中冶有色为您提供最新的广东广州有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!