一种环保无损的纤维增强复合材料回收方法,其包括下述步骤:(A)放置纤维增强树脂基复合材料在电解液中,其中该电解液含有重量比为0.5%~3%的可溶性盐酸盐;(B)对放置在电解液中的纤维增强树脂基复合材料通电,其中该纤维增强树脂基复合材料与电源的正极相连,并控制电流密度为3333.3~15000mA/m2,其中所述电流密度大小根据所述待回收纤维增强树脂基复合材料暴露于所述化学溶液的表面积大小进行计算;和(C)通电反应0.5‑200小时后,自该电解液中取出生成的纤维回收物。其中,所述环保无损的纤维增强复合材料回收方法的反应温度为25℃~75℃,其中所述电解液进一步含有0.5g/L~1.5g/L的催化剂A,其中该催化剂A为可溶性碱。
本发明适用于生物医学领域,提供了一种三维复合材料支架,所述三维复合材料支架由复合材料在溶剂中形成的混合溶液经低温快速成型技术打印形成,其中,所述复合材料包括天然高分子材料和合成生物材料,所述溶剂为六氟异丙醇和1,4?二氧六烷的混合溶剂。所述三维复合材料支架的制备方法,采用LDM打印获得,包括:将复合材料溶解在溶剂中形成混合溶液;通过CAD软件进行建模预处理、Aurora软件进行分层切片,并使用Cark软件设计打印参数;待成型室温度降至?25~?35℃时,在成型平台涂抹溶解所述复合材料的有机溶剂,将所述混合溶液倒入料罐中,使用Cark软件设置造型参数开始打印造型;取出后进行冷冻干燥处理。
本发明公开了一种碳化硼-铝合金复合材料板材及其制备方法,所述方法包括:S1、制备坯锭:制备碳化硼-铝合金复合材料坯锭;S2、热处理:对步骤S1制备的所述坯锭进行热处理,以达到所述碳化硼-铝合金复合材料坯锭的基体能够变形且不熔融的温度;S3、轧制:对经步骤S2热处理的所述坯锭以5~20%的道次压下量进行轧制;S4、重复步骤S2和S3,直至获得厚度为0.5~8mm的碳化硼-铝合金复合材料板材。通过本发明的方法制得的板材,组织均匀、结构致密、具有优秀力学性能及耐腐蚀性能的板材,在吸收中子的过程中不会产生释氢气泡而导致板材鼓包,适合乏燃料的安全运输和长期贮存。
本发明涉及一种复合材料的印前检测方法,包括如下步骤:通过送料单元将所述复合材料展开,使其被印刷面向上通过检测单元;通过检测单元检测所述复合材料的被印刷面,并处理该被印刷面上存在瑕疵的部分;复卷所述通过检测处理的复合材料。本发明还涉及一种实现上述方法的装置。实施本发明的复合材料的印前检测方法及装置,具有以下有益效果:由于在复合材料印刷之前就对其进行检测、处理,因此可以将复合材料上有瑕疵的部分在印刷前就加以剔除,减少产品的不良率。
本发明提供了一种锆基非晶合金复合材料,该复合材料包括锆基非晶合金基体,其中,该复合材料还包括附着在所述锆基非晶合金基体表面上的金属镀层。本发明还提供了该锆基非晶合金复合材料的制备方法。本发明的锆基非晶合金复合材料及其制备方法,可以使该材料表面获得光亮的、美观的外观装饰效果,同时该复合材料表面的金属镀层的耐腐蚀性和耐磨性仍很好,并且该金属镀层与锆基非晶合金基体表面的附着力很好。
本发明提出了金刚石铜复合材料用的粗化液及其表面镀镍方法,该粗化液按重量百分数计算,由以下组分组成:1-10%亚硝酸盐、1-10%强碱、0.2-0.6%醇胺、0.1-0.8%过氧化碳酰胺、0.1-0.6%高铁酸盐与78-97.6%水。表面镀镍方法为将金刚石铜复合材料表面依次进行粗化、除油、活化、酸洗与化学镀镍,所述粗化是将金刚石铜复合材料上述粗化液中进行化学粗化处理。该粗化液采用强氧化剂与强碱的混合,解决了传统酸性粗化液处理存在的咬铜反应的问题,又可以氧化溶解金刚石铜复合材料表面杂质和吸附各种有机物质与无机物质,从而可使金刚石铜复合材料表面达到清洁、粗化与亲水效果,提高了镀覆效率和质量。
本发明公开了一种聚丙烯复合材料及其制备方法与应用。该聚丙烯复合材料包括的重量百分比配方组分有:聚丙烯22~39%、聚甲基丙烯酸甲酯2~10%、白油0.6~1%、相容剂10~20%、填充剂20~30%、玻璃纤维20~30%、润滑剂0.4~1%。上述聚丙烯复合材料通过熔融挤出,使得各组分在高速剪切作用下,降低了粘度,增强了各组分的分散性,使得聚丙烯复合材料具有翘曲低、强度高的优良性能,使得该聚丙烯复合材料既具有良好的表面性能又具有高强度性能。其制备方法工艺简单,在常规的熔融挤出机上即可实施,不必借助特殊设备,操作过程简便易行。
本发明适用于工程塑料技术领域,提供了一种PPO复合材料、其制备方法和应用。该PPO复合材料,包括如下的组分:聚苯醚、聚苯乙烯、双酚A双(二苯基磷酸酯)、SEBS、三甘醇双-3-(3-叔丁基-4-羟基-5-甲苯苯基)丙烯酸酯、硫代二丙酸二月桂酯、亚磷酸三(壬基苯酯)、氧化锌、抗紫外线剂、炭黑、润滑剂%。本发明PPO复合材料,通过选用上述组分及其含量,使得PPO复合材料的具有优异的力学性能,优异的抗老化,抗紫外,耐水解特性能;本发明PPO复合材料制备方法,操作简单、成本低廉、适于工业化应用。
本发明公开了一种非卤环保阻燃PC复合材料及其制备方法。该非卤环保阻燃PC复合材料由以下重量配比的原料配制成:聚碳酸酯90-92%;硅类阻燃剂1-4%;阻燃抗滴落剂0.5-2%;磺酸钾盐0.5-1%;抗氧剂3-6%。本发明非卤环保阻燃PC复合材料的有益效果在于,该配方与工艺制备的非卤环保阻燃PC复合材料充模流动性好,易注塑成型,同现有技术相比,是一种更适合于注塑成型薄壁电子电器设备外壳PC复合材料。
本发明公开了一种锂离子电池及其正极复合材料,以及该锂离子电池和正极复合材料的制备方法,该正极复合材料包括正极活性物质和表面包覆膜,所述正极活性物质包括LiCoO2和LiCo1-x-yNixMnyO2,其中,x、y和x+y的取值范围均为0~0.9,所述表面包覆膜的组成成分包括碳,以及金属或非金属氧化物。本发明在保证复合材料高比容量、循环好、成本较低的同时能够提高正极复合材料高温下的稳定性、安全性,方法简单,制程容易控制,易于工业推广应用。
本发明涉及一种高导热性可成型热塑性复合材料及组合物。本发明提供了一种导热性可成型热塑性组合物或复合材料,所述组合物或复合材料通常可包含:多个金属涂覆填料颗粒;多个第二填料颗粒;和与所述金属涂覆填料颗粒和所述第二填料颗粒混合的聚合物基体。所述组合物或复合材料可具有约20瓦/米·开尔文~约35瓦/米·开尔文的热导率。可以形成具有可成型导热性热塑性组合物或复合材料的注射成型制品用于微电子、汽车、航空电子和其他散热应用。
本发明提供了一种非晶合金基复合材料及其制备方法,该复合材料包括基体相和增强相,其中,所述基体相为非晶相,所述增强相为多个等轴状晶化相,所述基体相是连续的,所述多个等轴状晶化相分布在所述基体相中,该复合材料中的氧含量为2100ppm以下。本发明提供的复合材料中的氧含量为2100ppm以下,所述多个等轴状晶化相分布在所述基体相中,复合材料的塑性显著改善。
本发明提供了一种陶瓷复合材料,包括:多孔开孔陶瓷,其中,所述多孔开孔陶瓷的孔隙内填充有胶黏剂。本发明还提供了一种陶瓷复合材料的制备方法,包括下述步骤:浸胶:将多孔开孔陶瓷浸入胶黏剂中,并将胶黏剂压入多孔开孔陶瓷的孔隙中;固化:使多孔开孔陶瓷中的胶黏剂固化,制得如上所述的陶瓷复合材料。本发明的制备方法通过在多孔开孔陶瓷的孔隙中填充胶黏剂,制得陶瓷复合材料,由于该陶瓷复合材料以多孔开孔陶瓷作为基体材料,保证了导热通路的形成,相较于高分子导热复合材料,导热性能优异;同时,由于对多孔开孔陶瓷进行浸胶处理,相较于单独使用陶瓷材料,其与发热元件和散热装置的结合性能更好,并且制作工艺简单,成本低。
本发明公开了一种铁合金复合材料及其制备方法,铁合金复合材料的组分按包括按质量百分比计:FeSiCr?91.5%~99.5%、Al2O30.5%~9.5%。铁合金复合材料的制备方法包括混合、热处理、粉碎、造粒、压制和烧结。本发明通过加入适量Al2O3来优化铁合金复合材料的磁导率特性。
本发明公开了一种石墨烯复合材料及其制备方法与应用。该石墨烯复合材料由石墨烯与二硫代乙二酰胺复合构成,其中,所述石墨烯占所述石墨烯复合材料总质量的10%~50%。石墨烯复合材料制备方法包含将石墨烯与二硫代乙二酰胺球磨混合的步骤,其中,所述石墨烯占所述石墨烯复合材料总质量的10%~50%。本发明石墨烯复合材料通过石墨烯与二硫代乙二酰胺的复合,使得该石墨烯复合材料具有优良的导电性和热稳定性。将该石墨烯复合材料用于储能器正极材料时,能有效的提高储能器正极的机械性能和容量,从而延长了储能器的使用寿命,使得储能器具有优良的功率密度。其工艺简单,生产条件易控,有效降低了生产成本,提高了生产效率,适合工业化生产。
本发明涉及一种用于工业大型制件的PPO/PBT复合材料及其制备方法,所述复合材料按重量百分比计,包括以下组份:聚苯醚(PPO)30~55%,聚对苯二甲酸丁二醇(PBT)8~25%,增韧剂13.6~32%,相容剂6~15%,抗氧剂0.2~0.8%,润滑剂0.2~0.6%,阻燃剂1~6%。本发明通过采用合适的相容剂,改善PPO和PBT材料之间由于结构而产生的不相容性,解决了PPO/PBT复合材料在注塑过程中的起皮的缺陷,及流动性差,难以成型大型制件的缺陷,大幅度的提高了PPO/PBT复合材料的综合性能,使成型制件更加容易,运用更加广泛,且制备工艺简单、成本低,可取得良好的经济效益。
本发明公开了一种石墨烯复合材料,按照质量百分数包括30%~65%的石墨烯、15%~35%的经过化学气相沉积处理的石墨、0.04%~4%的导电剂以及15%~42%可溶性高分子聚合物;所述可溶性高分子聚合物包覆所述石墨烯、经过化学气相沉积处理的石墨和导电剂形成局部有序的纳米线结构。这种石墨烯复合材料可以作为锂离子电容器的负极活性材料,利用其局部有序的纳米线结构来储存电荷,减少因负极直接与电解液接触导致的不可逆的副反应的发生,使得锂离子能够可逆均匀地嵌入-脱嵌于石墨烯复合材料的层间间隙,提高了正极材料的引出容量,从而提高锂离子电容器的能量密度。本发明还提供一种上述石墨烯复合材料的制备方法,以及采用该石墨烯复合材料的锂离子电容器。
本发明公开了一种高导热聚合物复合材料及其制备方法与应用。本发明高导热聚合物复合材料包括聚合物基体和填充于所述聚合物基体中的三维氮化硼,且所述三维氮化硼在所述高导热聚合物复合材料中的体积分数为5-50%。本发明高导热聚合物复合材料采用三维氮化硼在聚合物基体中构建三维网络结构,在聚合物基体中建立了导热通道,从而赋予本发明高导热聚合物复合材料具有高导热系数,且其制备方法条件温和、易控,其工艺简单,安全环保。
本发明公开了一种聚邻苯二甲酰胺复合材料及其制备方法。该聚邻苯二甲酰胺复合材料包括重量份数的配方组分为:聚邻苯二甲酰胺44~79.8份,玄武岩纤维20~55份,润滑剂0.2~1份。本发明硅聚邻苯二甲酰胺复合材料通过适当含量范围的各组分在挤出过程中互相作用,使得聚邻苯二甲酰胺复合材料具有良好的拉伸强度、弯曲强度和耐热等性能优良的物理综合性能。该聚邻苯二甲酰胺复合材料制备方法只需按配方将各组分进行分步进料并挤出即可得到产品,其制备方法工艺简单,成本低,安全、环保,适于工业化生产。
本发明涉及一种高体积电阻率PTT复合材料及其制备方法,该高体积电阻率PTT复合材料包括20?55份的PTT,10?20份的间规聚苯乙烯,10?50份的玄武岩纤维,12?16.6份的阻燃剂,3?4.5份的阻燃协效剂,2?5份的相容剂,0.4?0.6份的偶联剂,0.4?0.6份的抗氧剂,0?0.4份的成核剂,0?3份的其他助剂。本发明的高体积电阻率PTT复合材料通过加入间规聚苯乙烯进行改性,可以提高PTT复合材料的体积电阻率和耐热性,同时加入相应的偶联剂和相容剂将玄武岩纤维与PTT、sPS偶联,在对体积电阻率没有较大影响的同时显著提高了PTT复合材料的力学性能和耐热性,耐腐蚀性方面也具有优异的表现,在电子、电器、航空航天、汽车、消防、机械等领域具有良好的应用前景。
本发明涉及复合材料,特别涉及一种Ni基合金/陶瓷复合材料及其制备方法;述Ni基合金/陶瓷复合材料由Ni基合金和三元层状MAX相陶瓷组成,其中M为过渡族元素,A主要为ⅢA和ⅣA族元素,X为C或N,本发明Ni基合金/三元层状MAX相陶瓷复合材料室温下的摩擦系数在0.40-0.50,600℃高温下的摩擦系数在0.35-0.40,与现有Ni基高温合金的摩擦系数基本相同;Ni基合金/三元层状MAX相陶瓷复合材料在室温下和600℃高温下的磨损率均在10-5mm3/N·m数量级,远小于现有Ni基高温合金的磨损率。
为克服现有技术中压电材料的压电系数低、制备困难的问题,本发明提供了一种压电复合材料,包括碱性铌酸盐和碲纳米线;所述碱性铌酸盐具有如下通式:(1?y)(KxNa(1?x)NbO3_ yLiNbO3),其中,0.15≥y≥0.01,0.75≥x≥0.25;所述压电复合材料中,碱性铌酸盐和碲纳米线的重量比为5?3:3?1。同时,本发明还公开了上述压电复合材料的制备方法以及由该压电复合材料制备得到的压电器件。本发明提供的压电复合材料的压电系数高,并且制备工艺简单。
本发明公开了一种氮化硼复合材料的制备方法,包括如下步骤:将硼源、氮源和包覆基材混匀,干燥后得到前驱体,其中,所述包覆基材、所述硼源和所述氮源的质量比为1:1~20∶1~40;在保护气体氛围下,对所述前驱体进行热处理,所述热处理的温度为500℃~2000℃,所述热处理的时间6h~18h,得到所述氮化硼复合材料,所述氮化硼复合材料包括所述包覆基材和包覆在所述包覆基材表面的氮化硼。这种氮化硼复合材料的制备方法,与传统的氮化硼复合材料的制备方法相比,不需要引入结晶助剂,从而不会引入杂质,因而产物纯度较高。
本发明公开了一种聚乳酸-ABS树脂复合材料及其制备方法,该聚乳酸-ABS树脂复合材料包括的重量百分比的配方组分为:聚乳酸树脂及其共聚物60%~80%、ABS树脂10%~30%、相容剂3%~5%、增韧剂5%~10%、滑石粉0.5%~2%、偶联剂0.5%~1.5%。本发明聚乳酸-ABS树脂复合材料通过适当含量范围的各组分在挤出过程中互相作用,使得聚乳酸-ABS树脂复合材料具有良好的抗冲击性能、热变形温度和可降解性能。该聚乳酸-ABS树脂复合材料制备方法采用混炼反应挤出造粒一次性完成的工艺,其制备方法工艺简单,操作方便,效益高,成本低,适于工业化生产。
本发明提供了一种铝和不锈钢复合材料阳极氧化的方法,该复合材料具有铝和不锈钢板材的层叠复合结构,所述复合材料的四周边缘设置有遮蔽区,将所述复合材料的不锈钢表面上喷涂紫外光固化油墨并固化;然后在遮蔽区注塑塑料,所述塑料完全覆盖遮蔽区;再对复合材料进行阳极氧化;在阳极氧化之后去除遮蔽区。采用本发明的方法可实现在铝和不锈钢复合材料的侧面小区域或复杂部件上进行遮蔽,从而克服了传统油墨遮蔽工艺无法在铝和不锈钢复合层侧面小区域或复杂部件上进行的缺陷,同时该方法易于实现机械自动化操作,具有高效、稳定等特点。
本发明公开了一种PTC复合材料发热膜,包括依次层叠的第一高分子固化片、PTC复合材料层和第二高分子固化片。这种PTC复合材料发热膜的PTC复合材料层的材料为按照质量份数20份~90份的导电粒子、10份~80份的高分子聚合物和1份~10份的添加剂组成的混合物,也就是说,PTC复合材料层的材料为表现出正温度系数特性的填充导电粒子的结晶或半结晶高分子复合材料。这种PTC复合材料发热膜采用PTC特性的复合材料,能够通过自身智能控温,进行过热保护。本发明还公开了上述PTC复合材料发热膜的制备方法,以及采用该PTC复合材料发热膜的电热膜地暖器件。
一种聚合物基正温度系数热敏电阻复合材料及其制备方法,该复合材料包括炭黑、负载在炭黑上的金属、以及聚合物,其中,金属、炭黑、聚合物的重量比为0.005-5∶20-60∶40-80,该复合材料室温下的电阻率为4-22ΩCM。该复合材料的制备方法,其步骤如下:1)炭黑表面氧化处理;2)步骤1)中表面氧化处理后的炭黑浸入可溶性金属盐水溶液,过滤、干燥,得到负载有可溶性金属盐的炭黑;3)还原负载有可溶性金属盐的炭黑得到负载有金属的金属改性炭黑;4)将步骤3)得到的金属改性炭黑与聚合物混合、混炼、成型,得到正温度系数热敏电阻复合材料。该热敏电阻材料的成本较低,同时导电率较高。
本发明涉及一种环氧树脂复合材料,其包括环氧树脂、羧基封端的二聚酸改性聚酯、聚丙二醇醚缩水甘油醚及片状银粉。所述片状银粉在所述环氧树脂复合材料中所占的质量百分含量为58.2%至66%。所述环氧树脂复合材料的体电阻率小于0.001欧姆?厘米。所述环氧树脂复合材料的粘度为25000厘泊至40000厘泊。本发明提供的环氧树脂复合材料具有较低的体电阻率及良好的柔软性,可以作为电路板的低电阻率的电阻材料使用。本发明还提供一种该环氧树脂复合材料的制作方法、具有由该环氧树脂复合材料制成的电阻的电路板及该电路板的制作方法。
本发明公开了一种氧化铝复合材料,包括氧化石墨烯包覆的氧化铝颗粒、烯丙基酚类化合物改性的双马来酰亚胺-氰酸酯复合物和固化剂。这种氧化铝复合材料的氧化铝表面包覆氧化石墨烯片层和烯丙基酚类化合物改性的双马来酰亚胺-氰酸酯复合物,氧化石墨烯与烯丙基酚类化合物改性的双马来酰亚胺-氰酸酯复合物之间有较强的相互作用力,提高了界面的相互作用,减小了界面热阻,减少了团簇现象。相对于传统的氧化铝复合材料,这种氧化铝复合材料不容易出现团簇现象。本发明还公开了上述氧化铝复合材料的制备方法,以及使用上述氧化铝复合材料的覆铜基板。
中冶有色为您提供最新的广东深圳有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!