本发明提供了一种预测模型生成方法及自放电压降预测方法,预测模型生成方法包括:对多个锂离子电池分别进行soak实验和充放电循环实验,得到自放电压降数据和充放电曲线;从每个充放电曲线中提取动态特征,将动态特征与对应的自放电压降数据进行灰色关联度分析,得到目标数据;根据目标数据,构建高斯过程回归模型,并采用粒子群算法优化训练好的高斯过程回归模型的协方差函数和噪声方差,得到预测模型。本发明根据先验特征和后验特征的分布关系,建立高斯过程回归模型,并采用粒子群算法对高斯过程回归模型进行优化,得到最终的预测模型,使得精度较高。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
声明:
“预测模型生成方法及自放电压降预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)