本发明提供的基于纵横交叉优化模糊BP神经网络的电池故障诊断方法,首先对样本进行模糊化,对故障诊断中对不精确或不确定等模糊信息进行处理,是神经网络的训练样本更精确;接着利用纵横交叉算法对神经网络的各项权值和阈值进行优化,使神经网络收敛速度加快,并且不会陷入局部最优,将模糊理论与纵横交叉对神经网络的优化相结合,使得对电池故障的诊断更加精确。本发明提供的基于纵横交叉优化模糊BP神经网络的电池故障诊断方法,适用于
锂电池、铅酸电池以及其他燃料电池等常用的一系列电池,不管是静置还是使用状态,都能对电池进行实时的故障诊断,相比于现有的其他电池故障诊断方法,该方法的精度更高,误差更小。
声明:
“基于纵横交叉优化模糊BP神经网络的电池故障诊断方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)