本发明提供一种锂离子电池健康状态预测方法,具首先提取电池充电过程与电池老化相关的健康因子;在采用灰色关联分析法对提取的健康因子与电池容量之间的相关性进行分析,将相关性等级高的健康因子划分源域数据集和目标域数据集;再采用迁移学习方法将不同数据集的数据转换到相同的特征空间,在最大均值差异的基础上采用迁移成分分析对特征进行迁移和降维,实现在知识迁移的同时尽可能地减小计算负担,解决对于不同数据集需要对机器学习模型进行重新训练或重新建模的问题,提高了计算效率;最后采用长短时记忆神经网络进行电池SOH估计,预测精度高,提高估计准确性。
声明:
“锂离子电池健康状态估计方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)