本发明涉及一种基于时间卷积网络的锂离子
动力电池估算方法,包括:建立初始时间卷积网络模型;获取电池的实时状态数据集;根据电池的实时状态数据集对初始时间卷积网络模型进行训练、验证和测试,得到目标时间卷积网络模型;将待估算的电池数据输入至目标时间卷积网络模型,得到电池剩余电量量测值;根据待估算的电池数据,通过预设方法计算出电池剩余电量观测值;根据电池剩余电量量测值和电池剩余电量观测值,通过卡尔曼滤波计算电池剩余电量估算值;通过卡尔曼滤波算法优化电池剩余电量估算值。本发明结合卡尔曼滤波和时间卷积网络对电池SOC进行估算,克服了卡尔曼滤波算法需要精确的等效电池组电路模型的缺点,减小了神经网络估算方法的误差。
声明:
“基于时间卷积网络的锂离子动力电池估算方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)