本发明涉及一种基于强跟踪自适应修正的强鲁棒电动汽车
锂离子电池SOC和SOH联合估计方法,其特征在于通过将渐消因子和自适应滤波器引入扩展卡尔曼中,使系统具有跟踪突变和连续修改噪声统计特性的能力,克服了扩展卡尔曼算法估算精度不高的问题;针对扩展卡尔曼算法不具有跟踪突变的能力及噪声统计特性固定而导致的估算不精确问题,本方法将强跟踪滤波器和自适应滤波器引入扩展卡尔曼中,保证估算值的高精确度;该方法基于等效模型电路,增强观测数据比例,修改以卡尔曼为基础的噪声统计特性,防止可能存在的误差发散以追踪错误,实现锂离子电池SOC和SOH联合估算模型的建立和SOC值及SOH值的数学迭代运算算法的可靠运行。
声明:
“基于强跟踪自适应修正的强鲁棒电动汽车锂离子电池SOC和SOH联合估计” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)