本发明公开了一种基于特征筛选和高斯过程回归的
锂电池健康状态估计方法,包括步骤:1、采集待测电池历史数据,定义电池SOH。2、采用粒子群‑灰色关联分析PSO‑GRA方法筛选最优特征电压区间,并基于充电曲线提取特征。3、将样本划分为训练集、测试集。4、建立改进的GPR模型。5、基于训练集数据训练GPR模型。6、基于训练好的模型进行SOH估计,输出估计均值和置信区间。本发明实现了高相关性特征的自动提取,改进了传统的高斯过程回归GPR模型,提高了电池SOH估计精度,且能够适应不同锂离子电池数据。
声明:
“基于特征筛选和高斯过程回归的锂电池健康状态估计方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)