本发明公开了一种基于机器学习的锂离子
动力电池健康状态估算方法,用于实时估算动力电池的荷电状态和健康状态。通过建立锂离子电池的等效电路模型,对其进行参数辨识,再建立Uoc‑SOC模型,并估算SOC。使用大量离线数据训练得到以Uoc‑SOC模型参数为输入,最大可用容量为输出的神经网络模型。对同一时刻的Uoc与SOC进行曲线拟合,得到模型中的待辨识参数,将其输入到训练得到的神经网络模型,得到最大可用容量,并将得到的Uoc‑SOC模型参数及最大可用容量返回到SOC估算步骤,更新其状态方程和观测方程的参数。本发明提出一种锂离子电池健康状态估算方法,对电池健康状态进行在线估算,并对SOC估算进行了参数更新,提高了其估算精度。
声明:
“基于机器学习的锂离子动力电池健康状态估算方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)