本发明涉及电池状态参数估计及SOX预测技术领域,提供了基于数字孪生的
锂电池EIS和SOH估计方法。该方法包括:构建基于分数阶微分方程的锂电池云端数字孪生模型,通过车载TBOX将电压传感器开路电压和电流传感器采集的工作电流的孪生数据不断传输至云端服务器中,对状态参数进行的迭代优化;构建状态参数滤波器,获得预估
电化学阻抗谱;建立锂电池电化学阻抗增长的回归模型,将其引入非参数化的粒子滤波器框架,对锂电池的SOH进行估算,获得锂电池的SOH。本发明检测精度高,为电池最大输出功率SOP的计算提供参考,提升对状态参数和电池健康度的估算精度,能够准确地模拟电池的衰退变化过程。
声明:
“基于数字孪生的锂电池EIS和SOH估计方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)