本发明涉及一种
湿法冶金浓密洗涤过程的故障监测与诊断方法,步骤为:确定故障状态及影响因素,提取故障特征,采集样本数据;对采集的三维矩阵数据进行预处理,得到二维数据阵;根据二维数据阵,为进行样本训练,得到训练集;将训练集对SVM分类器进行训练,得到一个训练好的基于SVM的
浓密机底流管道堵塞故障检测模型;用得到的检测模型对测试集进行标签预测,辅助实际决策和控制,或与实际结果比较,调整支持向量机分类器的参数。本发明利用支持向量机特有的优势解决小样本、非线性及高维模式识别问题,可以推广应用到函数估计等其他机器学习问题中,来辅助实际决策和控制,调整支持向量机分类器的参数,达到较理想的测试结果。
声明:
“湿法冶金浓密洗涤过程的故障监测与诊断方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)