[1] |
Lei, C., Han, F., Li, D., et al. (2013) Dopamine as the Coating Agent and Carbon Precursor for the Fabrication of N-Doped Carbon Coated Fe3O4 Composites as Superior Lithium Ion Anodes. Nanoscale, 5, 1168-1175.
https://doi.org/10.1039/c2nr33043a |
[2] |
Jin, F. and Wang, Y. (2015) Topotactical Conversion of Carbon Coated Fe-Based Electrodes on Graphene Aerogels for Lithium Ion Storage. Journal of Materials Chemistry A, 3, 14741-14749. https://doi.org/10.1039/C5TA03605D |
[3] |
Yu, S., Hong Ng, V.M., Wang, F., et al. (2018) Synthesis and Application of Iron-Based Nanomaterials as Anodes of Lithium-Ion Batteries and Supercapacitors. Journal of Materials Chemistry A, 6, 9332-9367.
https://doi.org/10.1039/C8TA01683F |
[4] |
Gan, Y., Xu, F., Luo, J., et al. (2016) One-Pot Biotemplate Synthesis of FeS2 Decorated Sulfur-Doped Carbon Fiber as High Capacity Anode for Lithium-Ion Batteries. Electrochimica Acta, 209, 201-209.
https://doi.org/10.1016/j.electacta.2016.05.076 |
[5] |
Zhang, F., Wang, C., Huang, G., et al. (2016) FeS2@C Nanowires Derived from Organic-Inorganic Hybrid Nanowires for High-Rate and Long-Life Lithium-Ion Batteries. Journal of Power Sources, 328, 56-64.
https://doi.org/10.1016/j.jpowsour.2016.07.117 |
[6] |
Liu, Z., Lu, T., Song, T., et al. (2017) Structure-Designed Synthesis of FeS2@C Yolk-Shell Nanoboxes as a High- Performance Anode for Sodium-Ion Batteries. Energy & En-vironmental Science, 10, 1576-1580.
https://doi.org/10.1039/C7EE01100H |
[7] |
Sun, K., Wu, Q. and Gan, H. (2018) Molecular Insights into Ether-Based Electrolytes for Li-FeS2 Batteries. Energy Storage Materials, 12, 85-93. https://doi.org/10.1016/j.ensm.2017.12.003 |
[8] |
Fan, H.-H., Li, H.-H., Guo, J.-Z., et al. (2018) Target Construc-tion of Ultrathin Graphitic Carbon Encapsulated FeS Hierarchical Microspheres Featuring Superior Low-Temperature Lithium/Sodium Storage Properties. Journal of Materials Chemistry A, 6, 7997-8005. https://doi.org/10.1039/C8TA01392F |
[9] |
Kar, S. and Chaudhuri, S. (2004) Solvothermal Synthesis of Nano-crystalline FeS2 with Different Morphologies. Chemical Physics Letters, 398, 22-26. https://doi.org/10.1016/j.cplett.2004.09.028 |
[10] |
Li, L., Caban-Acevedo, M., Girard, S.N. and Jin, S. (2014) High-Purity Iron Pyrite (FeS2) Nanowires as High-Capacity Nanostructured Cathodes for Lithium-Ion Batteries. Na-noscale, 6, 2112-2118. https://doi.org/10.1039/C3NR05851D |
[11] |
Feng, X., He, X., Pu, W., et al. (2007) Hydro-thermal Synthesis of FeS2 for Lithium Batteries. Ionics, 13, 375-377.
https://doi.org/10.1007/s11581-007-0136-5 |
[12] |
Wang, D.-W., Wang, Q.-H. and Wang, T.-M. (2010) Controlled Growth of Pyrite FeS2 Crystallites by a Facile Surfactant-Assisted Solvothermal Method. CrystEngComm, 12, 755-761. https://doi.org/10.1039/B917941K |
[13] |
Wang, D., Wu, M., Wang, Q., et al. (2011) Controlled Growth of Uniform Nanoflakes-Built Pyrite FeS2 Microspheres and Their Electrochemical Properties. Ionics, 17, 163-167. https://doi.org/10.1007/s11581-010-0485-3 |
[14] |
Zhang, D., Mai, Y.J., Xiang, J.Y., et al. (2012) FeS2/C Composite as an Anode for Lithium Ion Batteries with Enhanced Reversible Capacity. Journal of Power Sources, 217, 229-235. https://doi.org/10.1016/j.jpowsour.2012.05.112 |
[15] |
Wen, X., Wei, X., Yang, L. and Shen, P.K. (2015) Self-Assembled FeS2 Cubes Anchored on Reduced Graphene Oxide as an Anode Material for Lithium Ion Batteries. Journal of Materials Chemistry A, 3, 2090-2096.
https://doi.org/10.1039/C4TA05575F |
[16] |
Yao, Y., Zhu, Y., Huang, J., et al. (2018) Porous CoS Nanosheets Coated by N and S Doped Carbon Shell on Graphene Foams for Free-Standing and Flexible Lithium Ion Battery Anodes: Influence of Void Spaces, Shell and Porous Nanosheet. Electrochimica Acta, 271, 242-251. https://doi.org/10.1016/j.electacta.2018.03.144 |
[17] |
Peng, S., Yu, L., Sun, M., et al. (2015) Bunched Akaganeite Nanorod Arrays: Preparation and High-Performance for Flexible Lithium-Ion Batteries. Journal of Power Sources, 296, 237-244.
https://doi.org/10.1016/j.jpowsour.2015.07.023 |
[18] |
Ni, L., Tang, W., Liu, X., et al. (2018) Hierarchical CoO/MnCo2O4.5 Nanorod Arrays on Flexible Carbon Cloth as High-Performance Anode Materials for Lithium-Ion Batteries. Dalton Transactions, 47, 3775-3784.
https://doi.org/10.1039/C7DT04686C |
[19] |
Ni, L., Jia, L., Chen, G., et al. (2018) Facile Synthesis of Porous FeCo2O4 Nanowire Arrays on Flexible Carbon Cloth with Superior Lithium Storage Properties. Journal of Physics and Chemistry of Solids, 122, 261-267.
https://doi.org/10.1016/j.jpcs.2018.06.032 |
[20] |
Meng, H., Ren, Z., Du, S., et al. (2018) Engineering a Stereo-Film of FeNi3 Nanosheet-Covered FeOOH Arrays for Efficient Oxygen Evolution. Nanoscale, 10, 10971-10978. https://doi.org/10.1039/C8NR02770F |
[21] |
Douglas, A., Carter, R., Oakes, L., et al. (2015) Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries. ACS Nano, 9, 11156-11165.
https://doi.org/10.1021/acsnano.5b04700 |